Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1151: 189-97, 2014.
Article in English | MEDLINE | ID: mdl-24838887

ABSTRACT

FISH (fluorescence in situ hybridization) is a valuable technique to visualize and quantify localization of different microbial species within biofilms. Biofilm conformation can be altered during typical sample preparation for FISH, which can impact observations in multispecies biofilms, including the relative positions of cells. Here, we describe methods to preserve 3-D structure during FISH for visualization of an anaerobic coculture biofilm of Desulfovibrio vulgaris Hildenborough and Methanococcus maripaludis.


Subject(s)
Biofilms , Desulfovibrio vulgaris/physiology , In Situ Hybridization, Fluorescence/methods , Methanococcus/physiology , Biofilms/growth & development , Coculture Techniques/methods , Desulfovibrio vulgaris/cytology , Methanococcus/cytology
3.
Front Microbiol ; 5: 693, 2014.
Article in English | MEDLINE | ID: mdl-25566209

ABSTRACT

Sulfate-reducing bacteria (SRB) can interact syntrophically with other community members in the absence of sulfate, and interactions with hydrogen-consuming methanogens are beneficial when these archaea consume potentially inhibitory H2 produced by the SRB. A dual continuous culture approach was used to characterize population structure within a syntrophic biofilm formed by the SRB Desulfovibrio vulgaris Hildenborough and the methanogenic archaeum Methanococcus maripaludis. Under the tested conditions, monocultures of D. vulgaris formed thin, stable biofilms, but monoculture M. maripaludis did not. Microscopy of intact syntrophic biofilm confirmed that D. vulgaris formed a scaffold for the biofilm, while intermediate and steady-state images revealed that M. maripaludis joined the biofilm later, likely in response to H2 produced by the SRB. Close interactions in structured biofilm allowed efficient transfer of H2 to M. maripaludis, and H2 was only detected in cocultures with a mutant SRB that was deficient in biofilm formation (ΔpilA). M. maripaludis produced more carbohydrate (uronic acid, hexose, and pentose) as a monoculture compared to total coculture biofilm, and this suggested an altered carbon flux during syntrophy. The syntrophic biofilm was structured into ridges (∼300 × 50 µm) and models predicted lactate limitation at ∼50 µm biofilm depth. The biofilm had structure that likely facilitated mass transfer of H2 and lactate, yet maximized biomass with a more even population composition (number of each organism) when compared to the bulk-phase community. Total biomass protein was equivalent in lactate-limited and lactate-excess conditions when a biofilm was present, but in the absence of biofilm, total biomass protein was significantly reduced. The results suggest that multispecies biofilms create an environment conducive to resource sharing, resulting in increased biomass retention, or carrying capacity, for cooperative populations.

4.
Sci Rep ; 3: 3140, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24189441

ABSTRACT

Knowledge of taxis (directed swimming) in the Archaea is currently expanding through identification of novel receptors, effectors, and proteins involved in signal transduction to the flagellar motor. Although the ability for biological cells to sense and swim toward hydrogen gas has been hypothesized for many years, this capacity has yet to be observed and demonstrated. Here we show that the average swimming velocity increases in the direction of a source of hydrogen gas for the methanogen, Methanococcus maripaludis using a capillary assay with anoxic gas-phase control and time-lapse microscopy. The results indicate that a methanogen couples motility to hydrogen concentration sensing and is the first direct observation of hydrogenotaxis in any domain of life. Hydrogenotaxis represents a strategy that would impart a competitive advantage to motile microorganisms that compete for hydrogen gas and would impact the C, S and N cycles.


Subject(s)
Hydrogen/chemistry , Locomotion/physiology , Methanococcus/physiology , Chemotaxis , Hydrogen/metabolism , Microscopy, Electron , Time-Lapse Imaging
5.
Elife ; 2: e00230, 2013 01 22.
Article in English | MEDLINE | ID: mdl-23359860

ABSTRACT

Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell-cell and cell-environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observed in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.DOI:http://dx.doi.org/10.7554/eLife.00230.001.


Subject(s)
Microbiota , Ecology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...