Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 11(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36009905

ABSTRACT

Pharmacokinetic-pharmacodynamic (PKPD) models have met increasing interest as tools to identify potential efficacious antibiotic dosing regimens in vitro and in vivo. We sought to investigate the impact of diversely shaped clinical pharmacokinetic profiles of meropenem on the growth/killing patterns of Pseudomonas aeruginosa (ARU552, MIC = 16 mg/L) over time using a semi-mechanistic PKPD model and a PK/PD index-based approach. Bacterial growth/killing were driven by the PK profiles of six patient populations (infected adults, burns, critically ill, neurosurgery, obese patients) given varied pathogen features (e.g., EC50, growth rate, inoculum), patient characteristics (e.g., creatinine clearance), and ten dosing regimens (including two dose levels and 0.5-h, 3-h and continuous-infusion regimens). Conclusions regarding the most favourable dosing regimen depended on the assessment of (i) the total bacterial load or fT>MIC (time that unbound concentrations exceed the minimum inhibitory concentration); (ii) the median or P0.95 profile of the population; and (iii) 8 h or 24 h time points. Continuous infusion plus loading dose as well as 3-h infusions (3-h infusions: e.g., for scenarios associated with low meropenem concentrations, P0.95 profiles, and MIC ≥ 16 mg/L) appeared superior to standard 0.5-h infusions at 24 h. The developed platform can serve to identify promising strategies of efficacious dosing for clinical trials.

2.
BMC Anesthesiol ; 19(1): 15, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30669968

ABSTRACT

BACKGROUND: In adolescents limited data are available on the pharmacokinetics (PK) and pharmacodynamics (PD) of propofol. In this study we derived a PK-PD model for propofol in adolescents undergoing idiopathic scoliosis surgery with an intraoperative wake-up test with reinduction of anesthesia using both Bispectral Index (BIS) and composite A-line ARX index (cAAI) as endpoints. METHODS: Fourteen adolescents (9.8-20.1 years) were evaluated during standardized propofol-remifentanil anesthesia for idiopathic scoliosis surgery with an intraoperative wake-up test with reinduction of anesthesia. BIS and cAAI were continuously measured and blood samples collected. A propofol PKPD model was developed using NONMEM. RESULTS: The time courses of propofol concentrations, BIS and cAAI values during anesthesia, intra-operative wakeup and reduction of anesthesia were best described by a two-compartment PK model linked to an inhibitory sigmoidal Emax PD model. For the sigmoidal Emax model, the propofol concentration at half maximum effect (EC50) was 3.51 and 2.14 mg/L and Hill coefficient 1.43 and 6.85 for BIS and cAAI, respectively. The delay in PD effect in relation to plasma concentration was best described by a two compartment effect-site model with a keo of 0.102 min- 1, ke12 of 0.121 min- 1 and ke21 of 0.172 min- 1. CONCLUSIONS: A population PKPD model for propofol in adolescents was developed that successfully described the time course of propofol concentration, BIS and cAAI in individuals upon undergoing scoliosis surgery with intraoperative wake-up test and reinduction of anesthesia. Large differences were demonstrated between both monitors. This may imply that BIS and cAAI measure fundamentally different endpoints in the brain.


Subject(s)
Anesthetics, Intravenous/administration & dosage , Models, Biological , Propofol/administration & dosage , Scoliosis/surgery , Adolescent , Anesthetics, Intravenous/pharmacokinetics , Anesthetics, Intravenous/pharmacology , Child , Consciousness Monitors , Evoked Potentials, Auditory/physiology , Female , Humans , Male , Monitoring, Intraoperative/methods , Propofol/pharmacokinetics , Propofol/pharmacology , Remifentanil/administration & dosage , Wakefulness/physiology , Young Adult
3.
Pharm Res ; 35(9): 182, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30062590

ABSTRACT

PURPOSE: Changes in drug absorption and first-pass metabolism have been reported throughout the pediatric age range. Our aim is to characterize both intestinal and hepatic CYP3A-mediated metabolism of midazolam in children in order to predict first-pass and systemic metabolism of CYP3A substrates. METHODS: Pharmacokinetic (PK) data of midazolam and 1-OH-midazolam from 264 post-operative children 1-18 years of age after oral administration were analyzed using a physiological population PK modelling approach. In the model, consisting of physiological compartments representing the gastro-intestinal tract and liver,intrinsic intestinal and hepatic clearances were estimated to derive values for bioavailability and plasma clearance. RESULTS: The whole-organ intrinsic clearance in the gut wall and liver were found to increase with body weight, with a 105 (95% confidence interval (CI): 5-405) times lower intrinsic gut wall clearance than the intrinsic hepatic clearance (i.e. 5.08 L/h (relative standard error (RSE) 10%) versus 527 L/h (RSE 7%) for a 16 kg individual, respectively). When expressed per gram of organ, intrinsic clearance increases with increasing body weight in the gut wall, but decreases in the liver, indicating that CYP3A-mediated intrinsic clearance and local bioavailability in the gut wall and liver do not change with age in parallel. The resulting total bioavailability was found to be age-independent with a median of 20.8% in children (95%CI: 3.8-50.0%). CONCLUSION: In conclusion, the intrinsic CYP3A-mediated gut wall clearance is substantially lower than the intrinsic hepatic CYP3A-mediated clearance in children from 1 to 18 years of age, and contributes less to the overall first-pass metabolism compared to adults.


Subject(s)
Anesthetics, Intravenous/pharmacokinetics , Cytochrome P-450 CYP3A/metabolism , Intestinal Mucosa/metabolism , Liver/metabolism , Midazolam/pharmacokinetics , Adolescent , Algorithms , Anesthetics, Intravenous/metabolism , Child , Child, Preschool , Female , Humans , Infant , Male , Midazolam/metabolism , Models, Biological
4.
CPT Pharmacometrics Syst Pharmacol ; 7(6): 374-383, 2018 06.
Article in English | MEDLINE | ID: mdl-29745466

ABSTRACT

To predict first-pass and systemic cytochrome P450 (CYP) 3A-mediated metabolism of midazolam in preterm neonates, a physiological population pharmacokinetic model was developed describing intestinal and hepatic midazolam clearance in preterm infants. On the basis of midazolam and 1-OH-midazolam concentrations from 37 preterm neonates (gestational age 26-34 weeks) receiving midazolam orally and/or via a 30-minute intravenous infusion, intrinsic clearance in the gut wall and liver were found to be very low, with lower values in the gut wall (0.0196 and 6.7 L/h, respectively). This results in a highly variable and high total oral bioavailability of 92.1% (range, 67-95%) in preterm neonates, whereas this is around 30% in adults. This approach in which intestinal and hepatic clearance were separately estimated shows that the high bioavailability in preterm neonates is explained by, likely age-related, low CYP3A activity in the liver and even lower CYP3A activity in the gut wall.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Intestinal Mucosa/chemistry , Liver/chemistry , Midazolam/pharmacokinetics , Administration, Intravenous , Administration, Oral , Biological Availability , Humans , Infant, Premature , Midazolam/administration & dosage , Models, Biological , Random Allocation
5.
Clin Pharmacokinet ; 57(5): 601-611, 2018 05.
Article in English | MEDLINE | ID: mdl-28785981

ABSTRACT

BACKGROUND: The clearance of cytochrome P450 (CYP) 3A substrates is reported to be reduced with lower age, inflammation and obesity. As it is unknown what the overall influence is of these factors in the case of obese adolescents vs. morbidly obese adults, we studied covariates influencing the clearance of the CYP3A substrate midazolam in a combined analysis of data from obese adolescents and morbidly obese adults. METHODS: Data from 19 obese adolescents [102.7 kg (62-149.5 kg)] and 20 morbidly obese adults [144 kg (112-186 kg)] receiving intravenous midazolam were analysed, using population pharmacokinetic modelling (NONMEM 7.2). In the covariate analysis, the influence of study group, age, total body weight (TBW), developmental weight (WTfor age and length) and excess body weight (WTexcess = TBW - WTfor age and length) was evaluated. RESULTS: The population mean midazolam clearance was significantly higher in obese adolescents than in morbidly obese adults [0.71 (7%) vs. 0.44 (11%) L/min; p < 0.01]. Moreover, clearance in obese adolescents increased with TBW (p < 0.01), which seemed mainly explained by WTexcess, and for which a so-called 'excess weight' model scaling WTfor age and length to the power of 0.75 and a separate function for WTexcess was proposed. DISCUSSION: We hypothesise that higher midazolam clearance in obese adolescents is explained by less obesity-induced suppression of CYP3A activity, while the increase with WTexcess is explained by increased liver blood flow. The approach characterising the influence of obesity in the paediatric population we propose here may be of value for use in future studies in obese adolescents.


Subject(s)
Hypnotics and Sedatives/pharmacokinetics , Midazolam/pharmacokinetics , Models, Biological , Obesity/metabolism , Administration, Intravenous , Adolescent , Adult , Child , Cytochrome P-450 CYP3A/metabolism , Female , Humans , Liver/blood supply , Liver/metabolism , Male , Middle Aged
6.
Int J Antimicrob Agents ; 49(2): 212-217, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28038962

ABSTRACT

Bedaquiline and its metabolite M2 are metabolised by CYP3A4. The antiretrovirals ritonavir-boosted lopinavir (LPV/r) and nevirapine inhibit and induce CYP3A4, respectively. Here we aimed to quantify nevirapine and LPV/r drug-drug interaction effects on bedaquiline and M2 in patients co-infected with HIV and multidrug-resistant tuberculosis (MDR-TB) using population pharmacokinetic (PK) analysis and compare these with model-based predictions from single-dose studies in subjects without TB. An observational PK study was performed in three groups of MDR-TB patients during bedaquiline maintenance dosing: HIV-seronegative patients (n = 17); and HIV-infected patients using antiretroviral therapy including nevirapine (n = 17) or LPV/r (n = 14). Bedaquiline and M2 samples were collected over 48 h post-dose. A previously developed PK model of MDR-TB patients was used as prior information to inform parameter estimation using NONMEM. The model was able to describe bedaquiline and M2 concentrations well, with estimates close to their priors and earlier model-based interaction effects from single-dose studies. Nevirapine changed bedaquiline clearance to 82% (95% CI 67-99%) and M2 clearance to 119% (92-156%) of their original values, indicating no clinically significant interaction. LPV/r substantially reduced bedaquiline clearance to 25% (17-35%) and M2 clearance to 59% (44-69%) of original values. This work confirms earlier model-based predictions of nevirapine and LPV/r interaction effects on bedaquiline and M2 clearance from subjects without TB in single-dose studies, in MDR-TB/HIV co-infected patients studied here. To normalise bedaquiline exposure in patients with concomitant LPV/r therapy, an adjusted bedaquiline dosing regimen is proposed for further study.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Antitubercular Agents/pharmacokinetics , Drug Interactions , HIV Infections/complications , HIV Infections/drug therapy , Tuberculosis, Multidrug-Resistant/complications , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Diarylquinolines/pharmacokinetics , Female , Humans , Lopinavir/pharmacokinetics , Male , Middle Aged , Nevirapine/pharmacokinetics , Ritonavir/pharmacokinetics , Young Adult
7.
Annu Rev Pharmacol Toxicol ; 55: 149-67, 2015.
Article in English | MEDLINE | ID: mdl-25340929

ABSTRACT

Obesity and morbid obesity are associated with many physiological changes affecting pharmacokinetics, such as increased blood volume, cardiac output, splanchnic blood flow, and hepatic blood flow. In obesity, drug absorption appears unaltered, although recent evidence suggests that this conclusion may be premature. Volume of distribution may vary largely, but the magnitude and direction of changes seem difficult to predict, with extrapolation on the basis of total body weight being the best approach to date. Changes in clearance may be smaller than in distribution, whereas there is growing evidence that the influence of obesity on clearance can be predicted on the basis of reported changes in the metabolic or elimination pathways involved. For obese children, we propose two methods to distinguish between developmental and obesity-related changes. Future research should focus on the characterization of physiological concepts to predict the optimal dose for each drug in the obese population.


Subject(s)
Evidence-Based Medicine/methods , Obesity/metabolism , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Administration, Oral , Adolescent , Adult , Age Factors , Aged , Animals , Biological Availability , Body Mass Index , Body Weight , Child , Drug Dosage Calculations , Female , Gastrointestinal Absorption , Humans , Male , Middle Aged , Models, Biological , Obesity/diagnosis , Obesity/physiopathology , Pharmaceutical Preparations/administration & dosage , Tissue Distribution , Young Adult
8.
Clin Pharmacokinet ; 53(10): 931-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25141974

ABSTRACT

BACKGROUND: While in vitro and animal studies have shown reduced cytochrome P450 (CYP) 3A activity due to obesity, clinical studies in (morbidly) obese patients are scarce. As CYP3A activity may influence both clearance and oral bioavailability in a distinct manner, in this study the pharmacokinetics of the CYP3A substrate midazolam were evaluated after semi-simultaneous oral and intravenous administration in morbidly obese patients, and compared with healthy volunteers. METHODS: Twenty morbidly obese patients [mean body weight 144 kg (range 112-186 kg) and mean body mass index 47 kg/m(2) (range 40-68 kg/m(2))] participated in the study. All patients received a midazolam 7.5 mg oral and 5 mg intravenous dose (separated by 159 ± 67 min) and per patient 22 samples over 11 h were collected. Data from 12 healthy volunteers were available for a population pharmacokinetic analysis using NONMEM(®). RESULTS: In the three-compartment model in which oral absorption was characterized by a transit absorption model, population mean clearance (relative standard error %) was similar [0.36 (4 %) L/min], while oral bioavailability was 60 % (13 %) in morbidly obese patients versus 28 % (7 %) in healthy volunteers (P < 0.001). Central and peripheral volumes of distribution increased substantially with body weight (both P < 0.001) and absorption rate (transit rate constant) was lower in morbidly obese patients [0.057 (5 %) vs. 0.130 (14 %) min(-1), P < 0.001]. CONCLUSIONS: In morbidly obese patients, systemic clearance of midazolam is unchanged, while oral bioavailability is increased. Given the large increase in volumes of distribution, dose adaptations for intravenous midazolam should be considered. Further research should elucidate the exact physiological changes at intestinal and hepatic level contributing to these findings.


Subject(s)
Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacokinetics , Midazolam/administration & dosage , Midazolam/pharmacokinetics , Obesity, Morbid/blood , Administration, Intravenous , Administration, Oral , Adolescent , Adult , Biological Availability , Case-Control Studies , Female , Healthy Volunteers , Humans , Hypnotics and Sedatives/blood , Male , Midazolam/blood , Middle Aged , Models, Biological , Obesity, Morbid/metabolism , Prospective Studies , Time Factors , Young Adult
9.
J Antimicrob Chemother ; 69(3): 715-23, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24214905

ABSTRACT

OBJECTIVES: As morbidly obese patients are prone to surgical site infections, adequate blood and subcutaneous tissue concentrations of prophylactic antibiotic agents during surgery are imperative. In this study we evaluated cefazolin subcutaneous adipose tissue distribution in morbidly obese and non-obese patients, thereby quantifying the influence of morbid obesity on cefazolin pharmacokinetics and enabling Monte Carlo simulations for subsequent dose adjustments. METHODS: Nine morbidly obese patients [body mass index (BMI) 47 ± 6 kg/m(2)], of whom eight were evaluable, and seven non-obese patients (BMI 28 ± 3 kg/m(2)) received cefazolin 2 g intravenously before surgery (NCT01309152). Using microdialysis, interstitial space fluid (ISF) samples of subcutaneous adipose tissue were collected together with total and unbound plasma cefazolin samples until 240 min after dosing. Using NONMEM, population pharmacokinetic modelling, covariate analysis and Monte Carlo simulations were performed. RESULTS: The unbound (free) cefazolin ISF penetration ratio (fAUC(tissue)/fAUC(plasma)) was 0.70 (range 0.68-0.83) in morbidly obese patients versus 1.02 (range 0.85-1.41) in non-obese patients (P < 0.05). A two-compartment model with saturable protein binding was identified in which the central volume of distribution and cefazolin distribution from the central compartment to the ISF compartment proved dependent on body weight (P < 0.001 and P < 0.01, respectively). Monte Carlo simulations showed reduced probability of target attainment for morbidly obese versus non-obese patients for MIC values of 2 and 4 mg/L. CONCLUSIONS: This study shows that cefazolin tissue distribution is lower in morbidly obese patients and reduces with increasing body weight, and that dose adjustments are required in this patient group.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cefazolin/pharmacokinetics , Subcutaneous Tissue/chemistry , Administration, Intravenous , Adult , Anti-Bacterial Agents/administration & dosage , Cefazolin/administration & dosage , Female , Humans , Male , Microdialysis , Middle Aged , Models, Statistical , Obesity, Morbid , Plasma/chemistry , Prospective Studies
10.
Clin Pharmacokinet ; 51(5): 277-304, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22448619

ABSTRACT

The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown. In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes. This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults. Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.


Subject(s)
Obesity/physiopathology , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Adolescent , Adult , Age Factors , Child , Clinical Trials as Topic , Cytochrome P-450 Enzyme System/metabolism , Glomerular Filtration Rate , Humans , Liver/blood supply , Liver/metabolism , Obesity/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...