Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 23(12): e202200168, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35393755

ABSTRACT

In homogeneous solid-state reactions, the single-crystal nature of the starting material remains unchanged, and the system evolves seamlessly through a series of solid solutions of reactant and product. Among [2+2] photodimerizations of cinnamic acid derivatives in the solid state, those involving salts of the 4-aminocinnamic acid have been recognized to proceed homogeneously in a "single-crystal-to-single-crystal" fashion by X-ray diffraction techniques. Here the bromide salt of this compound class is taken as a model system in a Raman spectroscopy study at low wavelengths, to understand how such a mechanism defines the trend of the crystal lattice vibrations during the reaction. Vibrational mode calculations, based on dispersion corrected DFT simulations of the crystal lattices involved in the transformation, have assisted the interpretation of the experiments. Such an approach has allowed us to clarify the spectral signatures and to establish a correlation between the dynamics of the monomer and dimer systems in a process where chemical progress and crystal structural changes are demonstrated to occur simultaneously.

2.
Chemphyschem ; 19(8): 993-1000, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29498172

ABSTRACT

The presence of a substrate-induced polymorph of 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene is probed in microscopic crystals and in thin films. Two experimental techniques are used: lattice phonon Raman and IR spectroscopy. The bulk crystal and substrate-induced phase have an entirely different molecular packing, and therefore, their Raman spectra are characteristic fingerprints of the respective polymorphs. These spectra can be unambiguously assigned to the individual polymorphs. Drop-cast and spin-coated thin films on solid substrates are investigated in the as-prepared state and after solvent-vapor annealing. Because Raman spectroscopy is less sensitive with decreasing film thickness, IR spectroscopy is shown to be a more feasible tool for phase detection. The surface-induced phase is mainly present in the as-prepared thin films, whereas the bulk phase is present after solvent-vapor annealing. This result suggests that the surface-induced phase is a metastable polymorph.

3.
ACS Omega ; 3(8): 9564-9571, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459088

ABSTRACT

We revisit the polymorphism of paracetamol by means of a micro-Raman technique, which has proved to be a powerful tool for structure recognition. Distinct lattice phonon spectra clearly identified the pure phases. Confocality enabled us to detect phase mixing between form II and either I or III on a micrometric scale in the same crystallite. Following the most recent findings on surface-mediated structures, we also investigated spin-coated films grown on glass, gold, and polystyrene substrates, confirming the selectivity of these surfaces for the metastable form III, which shows an unprecedented stability over a time span of several months. A mechanism of its transformation to phase II, via a partially ordered intermediate state, is suggested by polarized Raman measurements.

4.
ACS Nano ; 6(12): 10874-83, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23181564

ABSTRACT

Chemical-vapor-deposited large-area graphene is employed as the coating of transparent substrates for the growth of the prototypical organic n-type semiconductor perfluoropentacene (PFP). The graphene coating is found to cause face-on growth of PFP in a yet unknown substrate-mediated polymorph, which is solved by combining grazing-incidence X-ray diffraction with theoretical structure modeling. In contrast to the otherwise common herringbone arrangement of PFP in single crystals and "standing" films, we report a π-stacked arrangement of coplanar molecules in "flat-lying" films, which exhibit an exceedingly low π-stacking distance of only 3.07 Å, giving rise to significant electronic band dispersion along the π-stacking direction, as evidenced by ultraviolet photoelectron spectroscopy. Our study underlines the high potential of graphene for use as a transparent electrode in (opto-)electronic applications, where optimized vertical transport through flat-lying conjugated organic molecules is desired.

5.
J Am Chem Soc ; 134(42): 17671-9, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23039271

ABSTRACT

The photochemical reaction of 9,10-dinitroanthracene (DNO(2)A) to anthraquinone (AQ) + 2NO has been studied by means of lattice phonon Raman spectroscopy in the spectral region 10-150 cm(-1). In fact, crystal-to-crystal transformations are best revealed by following changes in the lattice modes, as even small modifications in the crystal structure lead to dramatic changes in symmetry and selection rules of vibrational modes. While analysis of the lattice modes allowed for the study of the physical changes, the chemical transformation was monitored by measuring the intramolecular Raman-active modes of both reactant and product. On the basis of the experimental data it has been possible, at a microscopic level, to infer crucial information on the reaction mechanism by simultaneously detecting molecular (vibrational modes) and crystal structure (lattice phonons) modifications during the reaction. At a macroscopic level we have detected an intriguing relationship between incident photons and mechanical strain, which manifests itself as a striking bending and unfolding of the specimens under irradiation. To clarify the mechanisms underlying the relationship between incoming light and molecular environment, we have extended the study to high pressure up to 2 GPa. It has been found that above 1 GPa the photoreaction becomes inhibited. The solid-state transformation has also been theoretically modeled, thus identifying the reaction pathway along which the DNO(2)A crystal lattice deforms to finally become the crystal lattice of the AQ product.


Subject(s)
Anthracenes/chemistry , Anthraquinones/chemical synthesis , Anthraquinones/chemistry , Crystallization , Photochemical Processes , Pressure , Spectrum Analysis, Raman
6.
Phys Chem Chem Phys ; 14(5): 1694-9, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22193510

ABSTRACT

The paper reports a complete analysis of the phonon structure of crystalline picene, a recently announced organic semiconductor. Both lattice and intramolecular vibrations are investigated. An exhaustive assignment of lattice phonons is obtained through polarized Raman spectra assisted by lattice dynamics calculations based on a well tested atom-atom potential model. Raman, infrared spectra and density functional (DFT) calculations are used for the characterization of intramolecular modes. Coupling between low-frequency molecular vibrations and lattice phonons is accounted for. Molecule-to-molecule transfer integrals, as well as the Peierls and Holstein (non-local and local) coupling constants, are evaluated through the semiempirical method INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization).


Subject(s)
Chrysenes/chemistry , Electrons , Phonons , Models, Molecular , Molecular Conformation , Quantum Theory , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Vibration
7.
J Chem Phys ; 135(8): 084701, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895208

ABSTRACT

The computational protocol we have developed for the calculation of local (Holstein) and non-local (Peierls) carrier-phonon coupling in molecular organic semiconductors is applied to both the low temperature and high temperature bulk crystalline phases of pentacene. The electronic structure is calculated by the semimpirical INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization) method. In the phonon description, the rigid molecule approximation is removed, allowing mixing of low-frequency intra-molecular modes with inter-molecular (lattice) phonons. A clear distinction remains between the low-frequency phonons, which essentially modulate the transfer integral from a molecule to another (Peierls coupling), and the high-frequency intra-molecular phonons, which modulate the on-site energy (Holstein coupling). The results of calculation agree well with the values extracted from experiment. The comparison with similar calculations made for rubrene allows us to discuss the implications for the current models of mobility.

8.
Adv Mater ; 22(37): 4198-203, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20564710

ABSTRACT

Solution prepared single crystal organic field-effect transistors (OFETs) combine low-cost with high performance due to structural ordering of molecules. However, in organic crystals polymorphism is a known phenomenon, which can have a crucial influence on charge transport. Here, the performance of solution-prepared single crystal OFETs based on two different polymorphs of dithiophene-tetrathiafulvalene, which were investigated by confocal Raman spectroscopy and X-ray diffraction, are reported. OFET devices prepared using different configurations show that both polymorphs exhibited excellent device performance, although the -phase revealed charge carrier mobility between two and ten times higher in accordance to the closer stacking of the molecules.


Subject(s)
Heterocyclic Compounds/chemistry , Thiophenes/chemistry , Transistors, Electronic , Crystallization , Spectrum Analysis, Raman , X-Ray Diffraction
9.
Chemphyschem ; 10(11): 1783-8, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19421986

ABSTRACT

Molecular dynamics simulations are presented for "bulklike" and "filmlike" monolayers of pentacene deposited on a slab of amorphous silica. The two simulated systems, which mainly differ in the tilt angle between the pentacene molecules and the silica surface, exhibit structural and energetic properties that match the available measurements. The bulklike monolayer, the structure of which corresponds to that of the low-temperature polymorph of crystalline pentacene, is stable. The filmlike monolayer, in which the molecules are most closely normal to the surface, is instead thermodynamically metastable, in agreement with the experimental evidence.

10.
Chemphyschem ; 10(4): 657-63, 2009 Mar 09.
Article in English | MEDLINE | ID: mdl-19212962

ABSTRACT

Low-frequency (10-150 cm(-1)) Raman spectra of the low-temperature (LT) and high-temperature (HT) polymorphs of the organic semiconductor alpha-quaterthiophene at 300 and 10 K are reported. Polarized spectra, assisted by quasi-harmonic lattice dynamics (QHLD) calculations, allow characterization of the lattice phonon dynamics and identification of the two phases spectroscopically. The experimental data can be explained by taking into account the coupling between intermolecular (lattice) and low-frequency intramolecular modes. Finally, Raman mapping is used to investigate the phase purity.

11.
J Phys Chem A ; 112(29): 6715-22, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18593103

ABSTRACT

Using sexithiophene as a benchmark compound, we present a very effective strategy for searching the potential energy minima of a crystalline material, described in terms of rigid molecules with Coulombic and atom-atom interactions. The strategy involves uniform sampling of the many-body energy hypersurface, mechanical identification of all constraints deriving from the crystallographic symmetry, and a "sight-resight" method, originally introduced in wildlife ecology, for assessing the completeness of the search. Thousands of distinct potential energy minima, with a surprising variety of structural arrangements, are identified for sexithiophene. Despite the large number of competing minima, the system presents a small number of deep minima, with very different structures and not particularly congested in energy or density. The two deepest minima correspond to the structures of the two known experimental polymorphs, which are satisfactorily described.

12.
J Phys Chem A ; 112(5): 1085-9, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18197650

ABSTRACT

We present a strategy for comparing the global properties of competing potential models. By systematically sampling the potential energy surface of crystalline tetracene, we assess how the number, energy and structure of its minima are modified by switching on (or off) the Coulombic interactions. The increased complexity of the Coulombic potential leads to a more "rugged" potential energy surface with a larger number of minima, but the effect is not large. In fact, we find a subset of minima stable only in presence of the Coulombic interactions, a smaller subset stable only in their absence, and a large majority stable in both cases. Among these, there is a very good, but not perfect, correlation between the energies and the structures computed with and without the electrostatic interactions. Although electrostatic interactions play a role even in a rigid nonpolar molecule such as tetracene, they are not as crucial as often believed, because altering the electrostatic model (or switching it off completely) leads, in most cases, to equivalent results.

13.
Langmuir ; 23(4): 2030-6, 2007 Feb 13.
Article in English | MEDLINE | ID: mdl-17279691

ABSTRACT

We demonstrate field effect transistors based on organic semiconductor molecules dispersed in a self-organized polystyrene (PS) latex bead matrix. An aqueous colloidal composite made of PS and tetrahexylsexithiophene (H4T6) is deposited with a micropipet into the channel of a bottom-contact field effect transistor. The beads self-organize into a network whose characteristic distances are governed by their packing. The semiconductor molecules crystallize in the interstitial voids, leading to the growth of large interconnected domains. Depending on the bead size and the ratio between H4T6 and PS, the fraction of the different phases in the polymorph can be controlled. In the transistors where the H4T6 metastable "red phase" is the largest, the device response and the charge mobility are comparable to those of sexithienyl thin films grown by high-vacuum sublimation.

14.
J Phys Chem A ; 110(37): 10858-62, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970382

ABSTRACT

We have systematically sampled the potential energy surface of crystalline tetracene to identify its local minima. These minima represent all possible stable configurations and constitute the "inherent structures" of the system. The crystal is described in terms of rigid molecules with Coulombic and atom-atom interactions. Hundreds of distinct minima are identified, mostly belonging to the space groups P (triclinic) and P2(1)/c (monoclinic), with a variety of structural arrangements. The deepest minimum corresponds to the high temperature-low pressure polymorph. This is the only polymorph with a completely described X-ray structure, which is satisfactorily described by the calculations. The next deep minimum is likely to correspond to the low temperature-high pressure polymorph, which has been experimentally identified but not yet fully described.

15.
J Am Chem Soc ; 127(9): 3038-43, 2005 Mar 09.
Article in English | MEDLINE | ID: mdl-15740142

ABSTRACT

We have investigated the high-pressure properties of the molecular crystal para-diiodobenzene, by combining optical absorption, reflectance, and Raman experiments with Car-Parrinello simulations. The optical absorption edge exhibits a large red shift from 4 eV at ambient conditions to about 2 eV near 30 GPa. Reflectance measurements up to 80 GPa indicate a redistribution of oscillator strength toward the near-infrared. The calculations, which describe correctly the two known molecular crystal phases at ambient pressure, predict a nonmolecular metallic phase, stable at high pressure. This high-density phase is characterized by an extended three-dimensional network, in which chemically bound iodine atoms form layers connected by hydrocarbon bridges. Experimentally, Raman spectra of samples recovered after compression show vibrational modes of elemental solid iodine. This result points to a pressure-induced molecular dissociation process which leads to the formation of domains of iodine and disordered carbon.

16.
J Am Chem Soc ; 124(10): 2128-9, 2002 Mar 13.
Article in English | MEDLINE | ID: mdl-11878962

ABSTRACT

We have performed a lattice dynamics calculation to compute the "inherent structures" of minimum potential energy for pentacene, starting from available X-ray data. The calculation shows that two distinct bulk crystalline phases of pentacene exist, with very subtle structural differences but clearly different phonon spectra. The method of crystal growth (from solution or vapor) is not the determining factor for obtaining either structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...