Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1117869, 2023.
Article in English | MEDLINE | ID: mdl-36968421

ABSTRACT

Introduction: Grapevine leafroll-associated viruses (GLRaVs) and grapevine red blotch virus (GRBV) cause substantial economic losses and concern to North America's grape and wine industries. Fast and accurate identification of these two groups of viruses is key to informing disease management strategies and limiting their spread by insect vectors in the vineyard. Hyperspectral imaging offers new opportunities for virus disease scouting. Methods: Here we used two machine learning methods, i.e., Random Forest (RF) and 3D-Convolutional Neural Network (CNN), to identify and distinguish leaves from red blotch-infected vines, leafroll-infected vines, and vines co-infected with both viruses using spatiospectral information in the visible domain (510-710nm). We captured hyperspectral images of about 500 leaves from 250 vines at two sampling times during the growing season (a pre-symptomatic stage at veraison and a symptomatic stage at mid-ripening). Concurrently, viral infections were determined in leaf petioles by polymerase chain reaction (PCR) based assays using virus-specific primers and by visual assessment of disease symptoms. Results: When binarily classifying infected vs. non-infected leaves, the CNN model reaches an overall maximum accuracy of 87% versus 82.8% for the RF model. Using the symptomatic dataset lowers the rate of false negatives. Based on a multiclass categorization of leaves, the CNN and RF models had a maximum accuracy of 77.7% and 76.9% (averaged across both healthy and infected leaf categories). Both CNN and RF outperformed visual assessment of symptoms by experts when using RGB segmented images. Interpretation of the RF data showed that the most important wavelengths were in the green, orange, and red subregions. Discussion: While differentiation between plants co-infected with GLRaVs and GRBV proved to be relatively challenging, both models showed promising accuracies across infection categories.

2.
Front Plant Sci ; 11: 579192, 2020.
Article in English | MEDLINE | ID: mdl-33240297

ABSTRACT

Rising temperatures in most agricultural regions of the world are associated with a higher incidence of extreme weather events such as heat waves. We performed an experiment to mitigate the impact of heat waves and exposure of berries in grapevine (Vitis vinifera cv. "Cabernet Sauvignon") with untreated vines (Exposed) or with fruit-zone partial shading (Shaded) under 40 and 80% replacement of crop evapotranspiration (ET c ) with sustained deficit irrigation in a factorially arranged experiment. The trial was performed in a vineyard with vertically shoot positioned trellis with a row orientation that concentrated solar radiation exposure on the southwest aspect of the fruit zone. Leaf stomatal conductance (g s ) and net carbon assimilation (A N ) were significantly lower in shaded leaves under partial fruit-zone shading that resulted in lower pruning mass for Shaded treatments. Stem water potential (Ψ stem ) responded to a large extent to increased irrigation. However, grapevines with partial fruit-zone shading had transiently better water status under 40% ET c . Cluster maximum temperatures were 3.9°C greater in Exposed grapevines. Exposed clusters had transiently lower acidity and higher pH. However, Exposed clusters on 40% ET c had higher total soluble solids (TSS). The experimental vineyard suffered a 4-day heat wave 21 days before harvest, resulting in 25% of the clusters being damaged in Exposed treatment, regardless of irrigation amount. Furthermore, berries in Exposed treatments suffered a great loss of anthocyanins and flavonols even if they were not damaged by direct solar exposure. The pre-planting decision of using a vertically shoot positioned trellis that concentrated solar radiation on the Southwest aspect offered mild protection in a hot climate region with a sunny growing season with extreme heat events during the execution of study. The extreme conditions under which this study was conducted are not unusual, and have become more expected. Our work provided evidence of the vulnerability of grape berry to heat waves and exposure during heat wave events and possible protection methods to mitigate these effects in situ in context of climate change.

3.
Front Plant Sci ; 11: 790, 2020.
Article in English | MEDLINE | ID: mdl-32655596

ABSTRACT

The relationships between differences in plant water status, induced by spatial variability in soil texture, and the changes in berry and wine composition were investigated in an irrigated Cabernet Sauvignon (Vitis vinefera L.) vineyard for 2 years. A stratified and an equidistant grid were overlaid on the vineyard to characterize the soil texture by proximal sensing, soil sampling, and grapevine physiological and berry chemical development. Based on the mid-day stem water potential (Ψ stem ) integrals, the vineyard was divided into two functional homogenous zones: Zone 1 with higher water stress and Zone 2 with lower water. Zone 1 consistently had lower Ψ stem , net carbon assimilation, and stomatal conductance in both years. Berry weight and titratable acidity were lower in Zone 1 at harvest. Zone 2 reached 26 and 24°Bx total soluble solids (TSS) at harvest in Years 1 and 2, respectively, with higher TSS values of 30 and 27°Bx in Zone 1. Ravaz index did not vary spatially. Fruits were harvested differentially in both years and vinified separately from the two zones. In Year 1, all berry skin anthocyanin derivatives, tri-, di- hydroxylated, and total anthocyanins concentrations were higher in Zone 2. However, in Year 2, only malvidin, tri-hydroxylated, and total anthocyanins were higher in Zone 1. There were no differences in wine flavonoids in Year 2 when harvest commenced earlier. In both years, Ψ stem , berry weight, and TSS were directly related to soil bulk electrical conductivity (EC). Our results indicated vineyard variability stemmed from soil texture that affected long-term plant water status which does not affect spatial variability of Ravaz Index. In conclusion, our work provides fundamental knowledge about the applicability of soil bulk EC sensing in the vineyards, and its potential directional utilization by connecting proximal soil sensing to spatial distribution of whole-plant physiological performance together with berry and wine chemistry.

4.
Front Plant Sci ; 10: 10, 2019.
Article in English | MEDLINE | ID: mdl-30766542

ABSTRACT

Exposure to solar radiation is a determining factor of grape composition. Flavonol synthesis is upregulated by solar radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation. We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments during berry development; (2) canopy porosity and leaf area index (LAI); and (3) spatial variability of water status, vigor and ripening and cultural practices in commercial vineyards. Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin, and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over-ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigor, and to LAI; and responded to shoot thinning or fruit-zone leaf removal. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

5.
J Agric Food Chem ; 67(9): 2437-2448, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30721055

ABSTRACT

Grapevine red blotch virus (GRBV) is suspected to alter berry ripening and chemistry. This study performed a physiological characterization of GRBV infected grapevines with attention to the factors leading to chemical changes during ripening of Cabernet Sauvignon in two rootstocks, 110R and 420A. RB(+) grapevines had transiently lower net photosynthesis; however, berry total soluble solids (TSS) accumulation was consistently reduced in the two years of study. Accumulation of anthocyanins and loss of titratable acidity and proanthocyanins were also delayed in RB(+) plants. However, the comparison of samples with the same TSS led to lower pH and anthocyanins content. The reduction in carbon import into berries under mild and transient reductions in carbon fixation suggested an impairment of translocation mechanisms with RB(+), leading into a desynchronization of ripening-related processes.


Subject(s)
Carbon/metabolism , Fruit/growth & development , Fruit/metabolism , Geminiviridae , Plant Diseases/virology , Vitis/virology , Anthocyanins/metabolism , Carbon Cycle/physiology , Fruit/chemistry , Hydrogen-Ion Concentration , Photosynthesis , Vitis/physiology
6.
J Sci Food Agric ; 98(2): 691-697, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28671281

ABSTRACT

BACKGROUND: The measurement of carbon isotopic discrimination in grape sugars at harvest (δ13 C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal. RESULTS: This work, spanning over 3 years, performed in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13 C. The highest δ13 C, indicating most severe water deficit, was recorded in gravelly soils on steep slopes. The amount of sugars and malic and tartaric acids was also related to δ13 C. The relationship between δ13 C and predawn leaf water potentials (Ψpd ) was also investigated, because the absolute values of measured δ13 C were lower than the values currently found in the literature. CONCLUSIONS: A mini-meta-analysis was performed, which showed that the slope of the relationships between minimum Ψpd and δ13 C was stable across studies (a change of 1‰ in δ13 C corresponded to a change of -0.2 MPa in the minimum Ψpd ), while the intercept of the comparison δ13 C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. © 2017 Society of Chemical Industry.


Subject(s)
Soil/classification , Vitis/physiology , Water/physiology , Carbohydrate Metabolism , Carbon Isotopes , Food Handling , Fruit/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry , Wine
7.
J Sci Food Agric ; 98(5): 1961-1967, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28914449

ABSTRACT

BACKGROUND: Grape withering is a process used to produce reinforced wines and raisins. Dehydration is usually carried out postharvest by keeping ripe grapes in special warehouses in controlled conditions of temperature, relative humidity (RH) and air flow. Alternatively, grape clusters can be left on the vines after the canes have been pruned. In general, dehydration increases stilbenes in grape, but there are few studies on the effects of on-vine withering. The stilbene profiles of Raboso Piave grape during postharvest and on-vine dehydration were studied here. RESULTS: High-resolution mass spectrometry (MS) was used to identify 19 stilbenes, including resveratrol monomers, dimers (viniferins), oligomers and glucoside derivatives. The two dehydration methods generally had different effects on the above nutraceuticals in grape. The samples kept in warehouses revealed significant increases in Z-ω-viniferin, E-ϵ-viniferin, δ-viniferin and another resveratrol dimer which were not observed in the plants. Trans-Resveratrol increased significantly only in samples dehydrated in the warehouse at 21 °C and 60-70% RH. CONCLUSION: The findings increase knowledge of stilbene composition in grapes subjected to withering on-vine. The choice of dehydration method affects the contents of these nutraceuticals in the grape and consequently in wines. Reasonably, it could also affect other secondary metabolites important for wine quality. © 2017 Society of Chemical Industry.


Subject(s)
Fruit/chemistry , Plant Extracts/chemistry , Stilbenes/chemistry , Vitis/chemistry , Chromatography, High Pressure Liquid , Desiccation , Food Preservation , Mass Spectrometry
8.
J Agric Food Chem ; 65(49): 10693-10702, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29141407

ABSTRACT

The incidence of solar radiation on red-skinned grapes can promote the synthesis of flavonoids desirable for wine production, but elevated temperature may impair their accumulation. We performed a shade cloth trial covering the fruit zone (from pepper-corn size to maturity) with four polyethylene 1 m curtains with different optical properties (20% shading factor Pearl colored and 40% shading factor Aluminet, Blue, and Black colored) and a Control with no cover. Cluster temperature was 3.7 °C lower on the Southwest side in Black-40% clusters during the warmest part of the day compared to Control. Results indicated a lower berry weight under the Aluminet-40%. Berries under the nets often had significantly lower pH and higher TA than Control, but only the Black-40% were significant at harvest. Black-40% had higher values of anthocyanins than Control toward the last weeks of development. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased HPLC; and proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins and flavonol contents were lower in Black-40% before veraison and the first part of ripening, respectively. However, their contents in Control decreased toward the end of ripening to a point where any net was different from Control. Anthocyanin and flavonol profiles were richer in 3', 4', 5' hydroxylated forms. Proanthocyanidin chain length was not affected while small changes were observed in the proportion of terminal catechin/epicatechin and in seed galloylation in response to treatments. Results show that shade cloths may efficiently palliate temperature spikes, especially the last weeks before harvest, while transmitting enough radiation into the fruit zone to achieve a better grape composition compared to uncovered grapes.


Subject(s)
Flavonoids/metabolism , Flavoring Agents/metabolism , Fruit/chemistry , Organic Chemicals/metabolism , Vitis/metabolism , Chromatography, High Pressure Liquid/methods , Climate Change , Color , Flavonoids/chemistry , Flavoring Agents/chemistry , Food , Food Analysis/methods , Humans , Light , Organic Chemicals/chemistry , Radiation , Seeds/chemistry , Seeds/metabolism , Vitis/chemistry , Wine/analysis
9.
J Agric Food Chem ; 65(26): 5255-5265, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28602091

ABSTRACT

Plant water stress affects grape (Vitis vinifera L. cv. Cabernet Sauvignon) berry composition and is variable in space due to variations in the physical environment at the growing site. We monitored the natural variability of grapevine water stress by stem water potential (Ψstem) and leaf gas exchange in an equi-distant grid in a commercial vineyard. Spatial differences were measured and related to topographical variation by modeling. Geospatial analysis and clustering allowed researchers to differentiate the vineyard block into two distinct zones having severe and moderate water stress where it varied by 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. The water status zones did not affect berry mass or yield per vine. Significant difference in total soluble solids was observed (3.56 Brix), and in titratable acidity, thus indicating a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). The anthocyanins were most affected by the two water stress zones. The dihydroxylated anthocyanins were more affected than trihydroxylated; therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψstem or the management zone. The results provide fundamental information on vineyard water status to discriminate harvest or direction to vineyard operators to modify irrigation management to equilibrate berry composition at harvest.


Subject(s)
Flavonoids/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Vitis/chemistry , Water/analysis , Fruit/metabolism , Vitis/metabolism , Water/metabolism
10.
Front Plant Sci ; 7: 796, 2016.
Article in English | MEDLINE | ID: mdl-27375651

ABSTRACT

In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.

11.
PLoS One ; 11(6): e0156631, 2016.
Article in English | MEDLINE | ID: mdl-27294368

ABSTRACT

Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE) without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin) and compares it to a film-forming antitranspirant (pinolene), traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa) was measured through stem water potential. Leaf stomatal conductance (gs) and photosynthesis rate (An) were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio). Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines) without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35%) in kaolin treatment, and the wine was judged more attractive (p-value <0.05) and slightly more appreciated (p-value < 0.1) than control. Pinolene did not increase WUEi, limiting An more than gs; grapes with this treatment contained lower sugar and anthocyanin content than control, and the obtained wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already-demonstrated uses of particle film technology, such as pest control and sunburn reduction, in order to achieve more sustainable vineyard management.


Subject(s)
Agriculture/methods , Droughts , Kaolin/pharmacology , Terpenes/pharmacology , Water/metabolism , Wine , Dehydration/prevention & control , Plant Diseases/prevention & control , Plant Leaves/drug effects , Plant Leaves/metabolism , Vitis/chemistry , Vitis/drug effects , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...