Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-11031611

ABSTRACT

The velocity distribution in a homogeneously cooling granular gas has been studied in the viscoelastic regime, when the restitution coefficient of colliding particles depends on the impact velocity. We show that for viscoelastic particles a simple scaling hypothesis is violated, i.e., that the time dependence of the velocity distribution does not scale with the mean square velocity as in the case of particles interacting via a constant restitution coefficient. The deviation from the Maxwellian distribution does not depend on time monotonically. For the case of small dissipation we detected two regimes of evolution of the velocity distribution function: Starting from the initial Maxwellian distribution, the deviation first increases with time on a collision time scale saturating at some maximal value; then it decays to zero on a much larger time scale which corresponds to the temperature relaxation. For larger values of the dissipation parameter there appears an additional intermediate relaxation regime. Analytical calculations for small dissipation agree well with the results of a numerical analysis.

2.
Article in English | MEDLINE | ID: mdl-11046456

ABSTRACT

The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the impact-velocity dependence of the restitution coefficient epsilon is taken into account. For the case of a constant epsilon the particles spread logarithmically slowly with time, whereas a velocity-dependent coefficient yields a power law time dependence. The impact of the difference in these time dependences on the properties of a freely cooling granular gas is discussed.

4.
Phys Rev Lett ; 76(21): 4058-4061, 1996 May 20.
Article in English | MEDLINE | ID: mdl-10061181
5.
Phys Rev A ; 45(4): 2263-2269, 1992 Feb 15.
Article in English | MEDLINE | ID: mdl-9907247
SELECTION OF CITATIONS
SEARCH DETAIL
...