Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 230(2): 317-24, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22360858

ABSTRACT

The GluN1 subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related changes in its expression pattern, some of which correlate with spatial memory performance in mice. Aged C57BL/6 mice show an age-related increase in mRNA expression of GluN1 subunit splice variants that lack the N terminal splice cassette, GluN1(0XX) (GluN1-a). This increase in expression is associated with good performance in reference and working memory tasks. The present study was undertaken to determine if GluN1(0XX) splice variants are required for good performance in reference memory tasks in young mice. Mice were bilaterally injected with either siRNA specific for GluN1(0XX) splice variants, control siRNA or vehicle alone into ventro-lateral orbital cortices. A fourth group of mice did not receive any injections. Starting five days post-injection, mice were tested for their performance in spatial reference memory, associative memory and cognitive flexibility tasks over four days in the Morris water maze. There was a 10-19% reduction in mRNA expression for GluN1(0XX) splice variants within the ventro-lateral orbital cortices in mice following GluN1(0XX) siRNA treatment. Declines in performance within the first half of reference memory testing were seen in the mice receiving siRNA against the GluN1(0XX) splice variants, as compared to the mice injected with control siRNA, vehicle and/or no treatment. These results suggest a role for the GluN1(0XX) splice variants in orbital regions for early acquisition and/or consolidation of spatial reference memory.


Subject(s)
Alternative Splicing/genetics , Memory , RNA, Messenger/analysis , Receptors, N-Methyl-D-Aspartate/metabolism , Aging/genetics , Animals , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gene Expression , Male , Maze Learning , Mice , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Small Interfering , Receptors, N-Methyl-D-Aspartate/genetics
2.
Front Aging Neurosci ; 2: 11, 2010.
Article in English | MEDLINE | ID: mdl-20552049

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...