Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 149: 106008, 2022 10.
Article in English | MEDLINE | ID: mdl-36030720

ABSTRACT

Histopathological study has been shown to improve diagnosis of various disease classifications effectively as any disease condition is correlated to characteristic set of changes in the tissue structure. This study aims at developing an automated neural network system for grading brain tumors (Glioblastoma Multiforme) from histopathological images within the Whole Slide Images (WSI) of hematoxylin and eosin (H&E) stains with significant accuracy. Hematoxylin channels are extracted from the histopathological image patches using color de-convolution. Cell nuclei are precisely segmented using three level Otsu thresholding. From each segmented image, nuclei boundaries are extracted to extract nucleus level features based on their shape and size. Geometric features including ellipse eccentricities, nucleus perimeter, area, and polygon edge counts are extracted using geometric algorithms to define the nuclei boundaries of the segmented image. These features are collected for a large number of nuclei and the nuclei are clustered using the K-Means algorithm in order to create a dictionary. One of the major contributions involves the creation of dictionary of a fixed number of representative cell nuclei to speed up patch level classification. This optimal dictionary is used for clustering extracted cell nuclei and a fixed length histogram of counts on different types of nuclei is obtained. The proposed system has been tested with a total of 239600 TCGA patches of GBM and 206000 patches of LGG collected from GDC data portal and it showed good diagnosis performance with auto-classification accuracy of 97.2% compared to other state-of-art methods. Our results on segmentation and classification are encouraging, with better attainment with regard to precision and accuracy in contrast with previous models. The auto grading proposed system will act as a potential guide for pathologists to make more accurate decisions.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted , Cell Nucleus/pathology , Eosine Yellowish-(YS) , Hematoxylin , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Neoplasm Grading
2.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-33367502

ABSTRACT

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.


Subject(s)
Anosmia/diagnosis , COVID-19/diagnosis , Adult , Anosmia/etiology , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Self Report , Smell
3.
medRxiv ; 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743605

ABSTRACT

BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10

4.
Asian Pac J Trop Med ; 5(11): 887-90, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23146803

ABSTRACT

OBJECTIVE: To identify the antibacterial potential of seagrass (Syringodium isoetifolium) associate microbes against bacterial pathogens. METHODS: Eumeration of microbial associates were analyzed with leaf and root samples of Syringodium isoetifolium. MIC and MBC were calculated for bacterial pathogens with microbial associates. Phylogenetic and GC-MS analysis were calculated for Actinomycetes sp. (Act01) which was the most potent. RESULTS: Of the isolated microbial associates phosphatase producing bacterial isolates were identified as maximum [(261.78±35.09) CFU×10(4)/g] counts in root sample. Of the selected microbial isolates Actinomycete sp (Act01) showed broad spectrum of antibacterial activity against antibiotic resistant and fish bacterial pathogens. Phylogenetic analysis of Act01 showed maximum identities (99%) with the Streptomyces sp. (GU5500072). The 16s rDNA secondary structure of Act01 showed the free energy values as -366.3 kkal/mol. The GC-MS analysis Act01 showed maximum retention value with 23.742 RT and the corresponding chemical class was identified as 1, 4-dihydroxy-2-(3-hydroxybutyl)-9, 10-anthraquinone 9, 10-anthrac. CONCLUSIONS: In conclusion, Streptomyces sp. (GU045544.1) from Syringodium isoetifolium could be used as potential antibacterial agent.


Subject(s)
Alismatales/microbiology , Anthraquinones/metabolism , Anti-Bacterial Agents/metabolism , Antibiosis , Streptomyces/metabolism , Bacterial Load , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/classification , Streptomyces/genetics , Streptomyces/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...