Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Onco Targets Ther ; 9: 6669-6677, 2016.
Article in English | MEDLINE | ID: mdl-27877052

ABSTRACT

BACKGROUND: The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. METHODS: A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. RESULTS: Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84-10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34-24.46) months. For irinotecan + bevacizumab group, the mean survival gain was -0.02±2.00, while that for the dendritic cell immunotherapy group was -0.01±4.54. CONCLUSION: For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620).

2.
J Cancer Res Ther ; 12(2): 1025-32, 2016.
Article in English | MEDLINE | ID: mdl-27461692

ABSTRACT

BACKGROUND: Plant extract therapy has been the cornerstone of cancer treatment for many years. The natural component curcumin demonstrated antineoplastic effects on different type of tumor cells. In this study, we explored the effectiveness of curcumin against low-passage human primary glioblastoma (GB) cell cultures. MATERIALS AND METHODS: Early passage GB cell cultures (GB3B, GB4B, and GB5B) were established from fresh samples tissue obtained from GB patients. Growth rate (GR) and doubling time (DT) was determined for each cell line. The cytotoxic effect of curcumin was quantified by hemocytometer cell counting, using trypan blue. To study the changes in cell shape, GB cells exposed to a concentration corresponding to inhibitory concentration 50 (IC50) of curcumin were studied by phase-contrast microscopy by capturing images during the treatment. RESULTS: Our results showed that GB cells proliferate with a GR of 0.2872 and a DT of 2.41 days for GB3B, a GR of 0.2787 and a DT of 2.49 days for GB4B, and a GR of 0.2787 and a DT of 2.49 days for GB5B. Curcumin induced cell death in GB cells in a time- and dose-dependent manner. The IC50 for GB3B was 46.4 µM, for GB4B was 78,3 µM, and for GB5B was 47.7 µM. Phase contrast microscopy showed that cultures treated with curcumin in a concentration corresponding to IC50 contained rounded cells and cell fragments, 72 h after the treatment. CONCLUSIONS: The results of the present investigation proved that curcumin is a natural compound potentially useful in the fight against GB.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glioblastoma , Humans , Tumor Cells, Cultured
3.
Int J Clin Exp Pathol ; 8(7): 7825-37, 2015.
Article in English | MEDLINE | ID: mdl-26339347

ABSTRACT

Growth factor receptors dysfunction has previously been correlated with glioma cell proliferation, ability to evade apoptosis, neo-angiogenesis and resistance to therapy. Antineoplastic molecules targeting growth factor receptors are in clinical handling, however the efficacy of these compounds has often been limited by the signaling redundancy. Here, we analyzed the effect of AG1433 (a PDGFR inhibitor), SU1498 (a VEGFR inhibitor) and BEZ235 (a PI3K/Akt/mTOR signaling pathways inhibitor) on glioblastoma cells in vitro. For this study, we used a low passage glioblastoma cell line (GB9B). Assessment of cell number over 72 h showed that the growth rate was 0.3024 and the doubling time of GB9B was 2.29 days. Similar cytotoxic effects were observed by using AG1433 and SU1498 treatment, while dual PI3K/Akt/mTOR inhibition by BEZ235 was more efficient in killing glioblastoma cells than individual PDGFR or VEGFR targeting. In SU1498 treated cells, caspase 3 activity was detected 3 hours after the treatment, while activation of caspase 8 and 9 was detected 48 hours later. AG1433 treatment induced caspase 3, 8 and 9, 3 hours after the treatment. BEZ235 treatment resulted in early caspase 3 and 8 activation, 3 hours after the treatment and an activation of caspase 9, 8 hours later.


Subject(s)
Glioblastoma/drug therapy , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Cell Proliferation/drug effects , Glioblastoma/pathology , Humans , Imidazoles , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Quinolines , TOR Serine-Threonine Kinases , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...