Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Adv Radiat Oncol ; 8(2): 101004, 2023.
Article in English | MEDLINE | ID: mdl-37008272

ABSTRACT

Purpose: Traditional peer reviews occur weekly, and can take place up to 1 week after the start of treatment. The American Society for Radiation Oncology peer-review white paper identified stereotactic body radiation therapy (SBRT) as a high priority for contour/plan review before the start of treatment, considering both the rapid-dose falloff and short treatment course. Yet, peer-review goals for SBRT must also balance physician time demands and the desire to avoid routine treatment delays that would occur in the setting of a 100% pretreatment (pre-Tx) review compliance requirement or prolonging the standard treatment planning timeline. Herein, we report on our pilot experience of a pre-Tx peer review of thoracic SBRT cases. Methods and Materials: From March 2020 to August 2021, patients undergoing thoracic SBRT were identified for pre-Tx review, and placed on a quality checklist. We implemented twice-weekly meetings for detailed pre-Tx review of organ-at-risk/target contours and dose constraints in the treatment planning system for SBRT cases. Our quality metric goal was to peer review ≥90% of SBRT cases before exceeding 25% of the dose delivered. We used a statistical process control chart with sigma limits (ie, standard deviations [SDs]) to access compliance rates with pre-Tx review implementation. Results: We identified 252 patients treated with SBRT to 294 lung nodules. When comparing pre-Tx review completion from initial rollout to full implementation, our rates improved from 19% to 79% (ie, from 1 sigma limit [SDs]) below to >2 sigma limits (SDs) above. Additionally, early completion of any form of contour/plan review (defined as any pre-Tx or standard review completed before exceeding 25% of the dose delivered) increased from 67% to 85% (March 2020-November 2020) to 76% to 94% (December 2020-August 2021). Conclusions: We successfully implemented a sustainable workflow for detailed pre-Tx contour/plan review for thoracic SBRT cases in the context of twice-weekly disease site-specific peer-review meetings. We reached our quality improvement objective to peer review ≥90% of SBRT cases before exceeding 25% of the dose delivered. This process was feasible to conduct in an integrated network of sites across our system.

2.
J Appl Clin Med Phys ; 24(7): e13953, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36877712

ABSTRACT

As cone-beam computed tomography (CBCT) has become the localization method for a majority of cases, the indications for diode-based confirmation of accurate patient set-up and treatment are now limited and must be balanced between proper resource allocation and optimizing efficiency without compromising safety. We undertook a de-implementation quality improvement project to discontinue routine diode use in non-intensity modulated radiotherapy (IMRT) cases in favor of tailored selection of scenarios where diodes may be useful. After analysis of safety reports from the last 5 years, literature review, and stakeholder discussions, our safety and quality (SAQ) committee introduced a recommendation to limit diode use to specific scenarios in which in vivo verification may add value to standard quality assurance (QA) processes. To assess changes in patterns of use, we reviewed diode use by clinical indication 4 months prior and after the implementation of the revised policy, which includes use of diodes for: 3D conformal photon fields set up without CBCT; total body irradiation (TBI); electron beams; cardiac devices within 10 cm of the treatment field; and unique scenarios on a case-by-case basis. We identified 4459 prescriptions and 1038 unique instances of diode use across five clinical sites from 5/2021 to 1/2022. After implementation of the revised policy, we observed an overall decrease in diode use from 32% to 13.2%, with a precipitous drop in 3D cases utilizing CBCT (from 23.2% to 4%), while maintaining diode utilization in the 5 selected scenarios including 100% of TBI and electron cases. By identifying specific indications for diode use and creating a user-friendly platform for case selection, we have successfully de-implemented routine diode use in favor of a selective process that identifies cases where the diode is important for patient safety. In doing so, we have streamlined patient care and decreased cost without compromising patient safety.


Subject(s)
In Vivo Dosimetry , Radiotherapy, Conformal , Humans , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Radiotherapy Planning, Computer-Assisted/methods , Electrons , Radiometry/methods
3.
Adv Radiat Oncol ; 8(2): 101094, 2023.
Article in English | MEDLINE | ID: mdl-36311821

ABSTRACT

Purpose: To develop the safest possible environment for treating urgent patients with COVID-19 requiring radiation, we describe the unique construction of negative air pressure computed tomography simulator and linear accelerator treatment vaults in addition to screening, delay, and treatment protocols and their evolution over the course of the COVID-19 pandemic. Methods and Materials: Construction of large high-efficiency particulate air filter air-flow systems into existing ductwork in computed tomography simulator rooms and photon and proton treatment vaults was completed to create negative-pressure rooms. An asymptomatic COVID-19 screening protocol was implemented for all patients before initiation of treatment. Patients could undergo simulation and/or treatment in the biocontainment environments according to a predefined priority scale and protocol. Patients treated under the COVID-19 protocol from June 2020 to January 2022 were retrospectively reviewed. Results: Negative air-flow environments were created across a regional network, including a multi-gantry proton therapy unit. In total, 6525 patients were treated from June 2020 through January 2022 across 5 separate centers. The majority of patients with COVID-19 had radiation treatment deferred when deemed safe. A total of 42 patients with COVID-19, who were at highest risk of an adverse outcome should there be a radiation delay, were treated under the COVID-19 biocontainment protocol in contrast to those who were placed on treatment break. For 61.9% of patients, these safety measures mitigated an extended break during treatment. The majority of patients (64.3%) were treated with curative intent. The median number of biocontainment sessions required by each patient was 6 (range, 1-15) before COVID-19 clearance and resumption of treatment in a normal air-flow environment. Conclusions: Constructing negative-pressure environments and developing a COVID-19 biocontainment treatment protocol allowed for the safe treatment of urgent radiation oncology patients with COVID-19 within our department and strengthens future biopreparedness. These biocontainment units set a high standard of safety in radiation oncology during the current or for any future infectious outbreak.

4.
Brachytherapy ; 17(3): 587-596, 2018.
Article in English | MEDLINE | ID: mdl-29548553

ABSTRACT

PURPOSE: As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. METHODS AND MATERIALS: We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. RESULTS: Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. CONCLUSIONS: The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure.


Subject(s)
Brachytherapy/methods , Genital Neoplasms, Female/radiotherapy , Magnetic Resonance Imaging, Interventional/methods , Radiation Oncology/methods , Computer Simulation , Female , Humans , Radiation Oncology/instrumentation
5.
Int J Radiat Oncol Biol Phys ; 94(5): 993-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27026305

ABSTRACT

PURPOSE: To describe radiation therapy cases during which voluntary incident reporting occurred; and identify patient- or treatment-specific factors that place patients at higher risk for incidents. METHODS AND MATERIALS: We used our institution's incident learning system to build a database of patients with incident reports filed between January 2011 and December 2013. Patient- and treatment-specific data were reviewed for all patients with reported incidents, which were classified by step in the process and root cause. A control group of patients without events was generated for comparison. Summary statistics, likelihood ratios, and mixed-effect logistic regression models were used for group comparisons. RESULTS: The incident and control groups comprised 794 and 499 patients, respectively. Common root causes included documentation errors (26.5%), communication (22.5%), technical treatment planning (37.5%), and technical treatment delivery (13.5%). Incidents were more frequently reported in minors (age <18 years) than in adult patients (37.7% vs 0.4%, P<.001). Patients with head and neck (16% vs 8%, P<.001) and breast (20% vs 15%, P=.03) primaries more frequently had incidents, whereas brain (18% vs 24%, P=.008) primaries were less frequent. Larger tumors (17% vs 10% had T4 lesions, P=.02), and cases on protocol (9% vs 5%, P=.005) or with intensity modulated radiation therapy/image guided intensity modulated radiation therapy (52% vs 43%, P=.001) were more likely to have incidents. CONCLUSIONS: We found several treatment- and patient-specific variables associated with incidents. These factors should be considered by treatment teams at the time of peer review to identify patients at higher risk. Larger datasets are required to recommend changes in care process standards, to minimize safety risks.


Subject(s)
Medical Errors , Neoplasms/radiotherapy , Patient Safety , Radiotherapy, Image-Guided/adverse effects , Radiotherapy, Intensity-Modulated/adverse effects , Risk Management , Adolescent , Adult , Age Factors , Case-Control Studies , Communication , Databases, Factual/statistics & numerical data , Documentation/statistics & numerical data , Humans , Likelihood Functions , Logistic Models , Medical Errors/prevention & control , Medical Errors/statistics & numerical data , Neoplasms/pathology , Quality Assurance, Health Care , Radiotherapy Planning, Computer-Assisted/adverse effects , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Radiotherapy, Image-Guided/statistics & numerical data , Radiotherapy, Intensity-Modulated/statistics & numerical data , Risk Assessment , Risk Factors , Risk Management/classification , Risk Management/methods , Risk Management/statistics & numerical data , Sex Factors , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...