Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e15493, 2023.
Article in English | MEDLINE | ID: mdl-37551349

ABSTRACT

Microvertebrate assemblages of the Upper Cretaceous (late Cenomanian to mid-Turonian) Favel Formation of Manitoba are formally described for the first time. New vertebrate occurrences from the Favel Formation include the actinopterygians Caturidae indet., cf. Albulidae incertae sedis, Micropycnodon kansasensis, Pachyrhizodus minimus, Protosphyraena sp., Thryptodus loomisi, chondrichthyans Ischyrhiza cf. mira, I. texana, Ptychodus marginalis, P. occidentalis, and P. rhombodus, the avian cf. Ichthyornis sp., the reptile Testudines indet., and an unknown taxon referred to as Vertebrate A. Changes in faunal occurrences throughout the formation suggest an offshore open marine environment for the lower and middle horizons and nearshore marine for the upper horizon, represent ing mid- and late stages of the Greenhorn third-order marine cycle. This newly described diversity increases biogeographic affinities of the late Cenomanian to mid-Turonian vertebrate assemblages of Manitoba with central WIS localities in South Dakota and Kansas, providing additional support for a central vertebrate biogeographic subprovince during late Cenomanian to early Turonian times, as well as WIS localities further south in Texas decreasing the gradient of the north-south or central-south community boundary during early and mid-Turonian times.


Subject(s)
Fossils , Vertebrates , Animals , Manitoba , Reptiles , Canada
2.
Science ; 379(6639): 1348-1352, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36996202

ABSTRACT

Large theropod dinosaurs are often reconstructed with their marginal dentition exposed because of the enormous size of their teeth and their phylogenetic association to crocodylians. We tested this hypothesis using a multiproxy approach. Regressions of skull length and tooth size for a range of theropods and extant varanid lizards confirm that complete coverage of theropod dinosaur teeth with extraoral tissues (gingiva and labial scales) is both plausible and consistent with patterns observed in living ziphodont amniotes. Analyses of dental histology from crocodylians and theropod dinosaurs, including Tyrannosaurus rex, further indicate that the most likely condition was complete coverage of the marginal dentition with extraoral tissue when the mouth was closed. This changes our perceptions about the appearance and oral configuration of these iconic predators and has broad implications for our interpretations of other terrestrial animals with large teeth.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Mouth , Phylogeny , Skull/anatomy & histology , Tooth , Paleontology
3.
Anat Rec (Hoboken) ; 306(7): 1918-1938, 2023 07.
Article in English | MEDLINE | ID: mdl-36273398

ABSTRACT

Despite the long history of research in the late Campanian Judith River Formation in northern Montana, most of the vertebrate fossils are represented by fragmentary remains, making precise taxonomic identifications difficult. Contrary to this, the partially contemporaneous Dinosaur Park Formation, Alberta, Canada is known for its tremendous fossil preservation, permitting rigorous studies of dinosaur diversity, evolution, and biostratigraphy. Hadrosaurids comprise one of the most abundant dinosaur clades in the Dinosaur Park Formation, but taxonomic affinities of hadrosaurid specimens remain poorly understood in the Judith River Formation. Corythosaurus is the most common hadrosaurid in the Dinosaur Park Formation and, to date, has been restricted to this formation. This study reports the first definitive Corythosaurus specimens from the Judith River Formation, which were discovered on two private ranches in northern Montana. The attribution of the most complete skeleton to Corythosaurus is indicated by: wide crest-snout angle, presence of premaxilla-nasal fontanelle, dorsoventrally expanded nasal, laterally exposed ophthalmic canal of the laterosphenoid, and tall neural spines. A second specimen preserves a large ilium that can be positively identified as Corythosaurus based on its associated skull, which is now in private hands. The specimens were recovered from the Coal Ridge Member of the Judith River Formation, which is approximately time equivalent to the Dinosaur Park Formation. Thus, the discovery of Corythosaurus in the Judith River Formation extends the biogeographic range of this genus and establishes a framework for future interformational biostratigraphic studies of Late Cretaceous dinosaur faunas in North America.


Subject(s)
Dinosaurs , Animals , Dinosaurs/anatomy & histology , Montana , Rivers , Fossils , Skull/anatomy & histology , Phylogeny
4.
Biol Lett ; 17(11): 20210383, 2021 11.
Article in English | MEDLINE | ID: mdl-34755552

ABSTRACT

Osteohistological data are commonly used to study the life history of extant and extinct tetrapods. While recent advances have permitted detailed reconstructions of growth patterns, physiology and other features using these data, they are most commonly used in assessments of ontogenetic stage and relative growth in extinct animals. These methods have seen widespread adoption in recent years, rapidly becoming a common component of the taxonomic description of new fossil taxa, but are often applied without close consideration of the sources of variation present or the dimensional scaling relationships that exist among different osteohistological measurements. Here, we use a combination of theoretical models and empirical data from a range of extant and extinct tetrapods to review sources of variability in common osteohistological measurements, their dimensional scaling relationships and the resulting interpretations that can be made from those data. In particular, we provide recommendations on the usage and interpretation of growth mark spacing/zonal thickness data, when these are likely to be unreliable, and under what conditions they can provide useful inferences for studies of growth and life history.


Subject(s)
Fossils , Animals
5.
Front Physiol ; 12: 576816, 2021.
Article in English | MEDLINE | ID: mdl-34012403

ABSTRACT

Many reptiles are able to continuously replace their teeth through life, an ability attributed to the existence of epithelial stem cells. Tooth replacement occurs in a spatially and temporally regulated manner, suggesting the involvement of diffusible factors, potentially over long distances. Here, we locally disrupted tooth replacement in the leopard gecko (Eublepharis macularius) and followed the recovery of the dentition. We looked at the effects on local patterning and functionally tested whether putative epithelial stem cells can give rise to multiple cell types in the enamel organs of new teeth. Second generation teeth with enamel and dentine were removed from adult geckos. The dental lamina was either left intact or disrupted in order to interfere with local patterning cues. The dentition began to reform by 1 month and was nearly recovered by 2-3 months as shown in µCT scans and eruption of teeth labeled with fluorescent markers. Microscopic analysis showed that the dental lamina was fully healed by 1 month. The deepest parts of the dental lamina retained odontogenic identity as shown by PITX2 staining. A pulse-chase was carried out to label cells that were stimulated to enter the cell cycle and then would carry BrdU forward into subsequent tooth generations. Initially we labeled 70-78% of PCNA cells with BrdU. After a 1-month chase, the percentage of BrdU + PCNA labeled cells in the dental lamina had dropped to 10%, consistent with the dilution of the label. There was also a population of single, BrdU-labeled cells present up to 2 months post surgery. These BrdU-labeled cells were almost entirely located in the dental lamina and were the likely progenitor/stem cells because they had not entered the cell cycle. In contrast fragmented BrdU was seen in the PCNA-positive, proliferating enamel organs. Homeostasis and recovery of the gecko dentition was therefore mediated by a stable population of epithelial stem cells in the dental lamina.

6.
Integr Comp Biol ; 60(3): 581-593, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32974642

ABSTRACT

Reptiles with continuous tooth replacement, or polyphyodonty, replace their teeth in predictable, well-timed waves in alternating tooth positions around the mouth. This process is thought to occur irrespective of tooth wear or breakage. In this study, we aimed to determine if damage to teeth and premature tooth extraction affects tooth replacement timing long-term in juvenile green iguanas (Iguana iguana). First, we examined normal tooth development histologically using a BrdU pulse-chase analysis to detect label-retaining cells in replacement teeth and dental tissues. Next, we performed tooth extraction experiments for characterization of dental tissues after functional tooth (FT) extraction, including proliferation and ß-Catenin expression, for up to 12 weeks. We then compared these results to a newly analyzed historical dataset of X-rays collected up to 7 months after FT damage and extraction in the green iguana. Results show that proliferation in the dental and successional lamina (SL) does not change after extraction of the FT, and proliferation occurs in the SL only when a tooth differentiates. Damage to an FT crown does not affect the timing of the tooth replacement cycle, however, complete extraction shifts the replacement cycle ahead by 4 weeks by removing the need for resorption of the FT. These results suggest that traumatic FT loss affects the timing of the replacement cycle at that one position, which may have implications for tooth replacement patterning around the entire mouth.


Subject(s)
Iguanas/surgery , Odontogenesis , Tooth Extraction/veterinary , Tooth/growth & development , Animals , Tooth/surgery
7.
Naturwissenschaften ; 106(1-2): 2, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30610457

ABSTRACT

The Early Permian Richards Spur locality is unique in preserving a highly diverse faunal assemblage in a cave system, composed of synapsids, reptiles, and anamniotes. However, the presence of Dimetrodon, the most common synapsid of Early Permian localities of the southwestern USA, has never been recorded from the site. Here, we describe for the first time the morphology and histology of a small neural spine with the distinctive figure-8 shape attributable to Dimetrodon. Additionally, histological analysis of previously described sphenacodontid teeth suggests the presence of a derived species of Dimetrodon at the Richards Spur locality. The presence of this derived synapsid, typical of the later occurring Kungurian localities of Texas and Oklahoma, is unexpected at the stratigraphically older Richards Spur locality. The cave system at Richards Spur preserves mainly basal synapsid taxa, including small caseid, varanopid, and sphenacodontid skeletal remains. The presence of a derived species of Dimetrodon suggests not only that this animal was more widespread than previously thought, but that there are different patterns of Early Permian synapsid evolution in different ecological settings.


Subject(s)
Fossils , Reptiles/anatomy & histology , Reptiles/classification , Animal Distribution , Animals , Caves , Oklahoma , Vertebrates/classification
8.
Proc Biol Sci ; 285(1890)2018 11 07.
Article in English | MEDLINE | ID: mdl-30404877

ABSTRACT

The mammalian dentition is uniquely characterized by a combination of precise occlusion, permanent adult teeth and a unique tooth attachment system. Unlike the ankylosed teeth in most reptiles, mammal teeth are supported by a ligamentous tissue that suspends each tooth in its socket, providing flexible and compliant tooth attachment that prolongs the life of each tooth and maintains occlusal relationships. Here we investigate dental ontogeny through histological examination of a wide range of extinct synapsid lineages to assess whether the ligamentous tooth attachment system is unique to mammals and to determine how it evolved. This study shows for the first time that the ligamentous tooth attachment system is not unique to crown mammals within Synapsida, having arisen in several non-mammalian therapsid clades as a result of neoteny and progenesis in dental ontogeny. Mammalian tooth attachment is here re-interpreted as a paedomorphic condition relative to the ancestral synapsid form of tooth attachment.


Subject(s)
Biological Evolution , Dentition , Mammals/anatomy & histology , Reptiles/anatomy & histology , Tooth/anatomy & histology , Animals , Mammals/growth & development , Reptiles/growth & development , Tooth/growth & development
9.
J R Soc Interface ; 13(125)2016 12.
Article in English | MEDLINE | ID: mdl-27974573

ABSTRACT

Teeth are key to understanding the feeding ecology of both extant and extinct vertebrates. Recent studies have highlighted the previously unrecognized complexity of dinosaur dentitions and how specific tooth tissues and tooth shapes differ between taxa with different diets. However, it is unknown how the ultrastructure of these tooth tissues contributes to the differences in feeding style between taxa. In this study, we use third harmonic generation microscopy and scanning electron microscopy to examine the ultrastructure of the dentine in herbivorous and carnivorous dinosaurs to understand how the structure of this tissue contributes to the overall utility of the tooth. Morphometric analyses of dentinal tubule diameter, density and branching rates reveal a strong signal for dietary preferences, with herbivorous saurischian and ornithischian dinosaurs consistently having higher dentinal tubule density than their carnivorous relatives. We hypothesize that this relates to the hardness of the dentine, where herbivorous taxa have dentine that is more resistant to breakage and wear at the dentine-enamel junction than carnivorous taxa. This study advocates the detailed study of dentine and the use of advanced microscopy techniques to understand the evolution of dentition and feeding ecology in extinct vertebrates.


Subject(s)
Carnivory/physiology , Dentin/physiology , Dentin/ultrastructure , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Animals
10.
Appl Spectrosc ; 70(11): 1883-1890, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27324425

ABSTRACT

Synchrotron micro X-ray fluorescence (XRF) spectroscopy with two-dimensional element mapping, micro X-ray diffraction (XRD), electron spin resonance spectroscopy (ESR) and atomic force microscopy (AFM) were used to investigate the chemical and structural nature of the enamel of a tooth from Troodon, a small theropod dinosaur. These methods show that the crystallites in the Troodon tooth are submicron-sized carbonated calcium hydroxyapatite, which are semi-randomly oriented with a preferred orientation of (002) towards the surface of the tooth. Transition metal ions are distributed in the voids between crystallite clusters. Comparison of the ESR spectra indicates that the Troodon tooth had less exposure to UV than a fossilized crocodile tooth.


Subject(s)
Dental Enamel/chemistry , Diet , Dinosaurs/anatomy & histology , Environment , Fossils , Animals , Biological Evolution , Dental Enamel/physiology , Dinosaurs/physiology , Microscopy, Atomic Force , Spectrometry, X-Ray Emission , X-Ray Diffraction
11.
J Clin Periodontol ; 43(4): 323-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26743267

ABSTRACT

AIM: Dental ankylosis is a rare pathological condition in mammals, however, it is prevalent in their extinct relatives, the stem mammals. This study seeks to compare the mineralized state of the periodontal attachment apparatus between stem and crown mammals and discuss its implications for the evolution of non-mineralized periodontal attachment in crown mammals, including humans. MATERIALS AND METHODS: Thin sections of a fossil mammal and three stem mammals were compared to reconstruct periodontal tissue development across distantly related lineages. RESULTS: Comparisons revealed that the extinct relatives of mammals possessed the same periodontal tissues as those in mammals, albeit in different arrangements. The ankylotic condition in stem mammals was achieved through extensive alveolar bone deposition, which eventually contacted the root cementum, thus forming a calcified periodontal ligament. CONCLUSIONS: Dental ankylosis was part of the normal development of the stem mammal periodontium for millions of years prior to the evolution of a permanent gomphosis in mammals. Mammals may have evolved a permanent gomphosis by delaying the processes that produced dental ankylosis in stem mammals. Pathological ankylosis may represent a reversion to the ancestral condition, which now only forms via advanced ageing and pathology.


Subject(s)
Dental Cementum , Periodontium , Animals , Homeostasis , Humans , Mammals , Mandible , Minerals , Periodontal Ligament
12.
J Anat ; 226(4): 322-33, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25689039

ABSTRACT

Tooth counts are commonly recorded in fossil diapsid reptiles and have been used for taxonomic and phylogenetic purposes under the assumption that differences in the number of teeth are largely explained by interspecific variation. Although phylogeny is almost certainly one of the greatest factors influencing tooth count, the relative role of intraspecific variation is difficult, and often impossible, to test in the fossil record given the sample sizes available to palaeontologists and, as such, is best investigated using extant models. Intraspecific variation (largely manifested as size-related or ontogenetic variation) in tooth counts has been examined in extant squamates (lizards and snakes) but is poorly understood in archosaurs (crocodylians and dinosaurs). Here, we document tooth count variation in two species of extant crocodylians (Alligator mississippiensis and Crocodylus porosus) as well as a large varanid lizard (Varanus komodoensis). We test the hypothesis that variation in tooth count is driven primarily by growth and thus predict significant correlations between tooth count and size, as well as differences in the frequency of deviation from the modal tooth count in the premaxilla, maxilla, and dentary. In addition to tooth counts, we also document tooth allometry in each species and compare these results with tooth count change through growth. Results reveal no correlation of tooth count with size in any element of any species examined here, with the exception of the premaxilla of C. porosus, which shows the loss of one tooth position. Based on the taxa examined here, we reject the hypothesis, as it is evident that variation in tooth count is not always significantly correlated with growth. However, growth trajectories of smaller reptilian taxa show increases in tooth counts and, although current samples are small, suggest potential correlates between tooth count trajectories and adult size. Nevertheless, interspecific variation in growth patterns underscores the importance of considering and understanding growth when constructing taxonomic and phylogenetic characters, in particular for fossil taxa where ontogenetic patterns are difficult to reconstruct.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Dentition , Lizards/anatomy & histology , Alligators and Crocodiles/growth & development , Animals , Biological Evolution , Fossils , Lizards/growth & development , Phylogeny , Species Specificity , Tooth/anatomy & histology
13.
Naturwissenschaften ; 101(11): 883-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25179435

ABSTRACT

Recent histological studies have revealed a diversity of dental features in Permo-Carboniferous tetrapods. Here, we report on the occurrence of plicidentine (infolded dentine around the base of the tooth root) in Sphenacodontia, the first such documentation in Synapsida, the clade that includes mammals. Five taxa were examined histologically, Ianthodon schultzei, Sphenacodon ferocior, Dimetrodon limbatus, Dimetrodon grandis, and Secodontosaurus obtusidens. The tooth roots of Ianthodon possess multiple folds, which is generally viewed as the primitive condition for amniotes. Sphenacodon and D. limbatus have distinctive "four-leaf clover"-shaped roots in cross section, whereas Secodontosaurus has an elongate square shape with only subtle folding. The most derived and largest taxon examined in this study, D. grandis, has rounded roots in cross section and therefore no plicidentine. This pattern of a loss of plicidentine in sphenacodontids supports previous functional hypotheses of plicidentine, where teeth with shallow roots require folds to increase the area of attachment to the tooth-bearing element, whereas teeth with long roots do not. This pattern may also reflect differences in diet between co-occurring sphenacodontids as well as changes in feeding niche through time, specifically in the apex predator Dimetrodon.


Subject(s)
Fossils , Phylogeny , Tooth Root/anatomy & histology , Animals
14.
Nat Commun ; 5: 3269, 2014.
Article in English | MEDLINE | ID: mdl-24509889

ABSTRACT

Paleozoic sphenacodontid synapsids are the oldest known fully terrestrial apex predators. Dimetrodon and other sphenacodontids are the first terrestrial vertebrates to have strong heterodonty, massive skulls and well-developed labio-lingually compressed and recurved teeth with mesial and distal cutting edges (carinae). Here we reveal that the dentition of Dimetrodon and other sphenacodontids is diverse. Tooth morphology includes simple carinae with smooth cutting edges and elaborate enamel features, including the first occurrence of cusps and true denticles (ziphodonty) in the fossil record. A time-calibrated phylogenetic analysis indicates that changes in dental morphology occur in the absence of any significant changes in skull morphology, suggesting that the morphological change is associated with changes in feeding style and trophic interactions in these ecosystems. In addition, the available evidence indicates that ziphodonty evolved for the first time in the largest known species of the genus Dimetrodon and independently from the ziphodont teeth observed in some therapsids.


Subject(s)
Biological Evolution , Dentition , Dinosaurs/anatomy & histology , Animals , Feeding Behavior , Fossils
SELECTION OF CITATIONS
SEARCH DETAIL
...