Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ann Rev Mar Sci ; 13: 81-108, 2021 01.
Article in English | MEDLINE | ID: mdl-32726567

ABSTRACT

Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.


Subject(s)
Bacteria/enzymology , Carbon Cycle , Microalgae/metabolism , Oceanography/methods , Phytoplankton/metabolism , Polysaccharides/chemistry , Biodegradation, Environmental , Biomass , Carbohydrate Sequence , Geologic Sediments/chemistry , Hydrolases/metabolism , Oceans and Seas , Polysaccharides/metabolism , Seawater/chemistry
2.
Appl Microbiol Biotechnol ; 72(4): 816-22, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16642332

ABSTRACT

The new marine Halomonas sp. strain GWS-BW-H8hM (DSM 17996) was found to produce 3-(4'-hydroxyphenyl)-4-phenylpyrrole-2,5-dicarboxylic acid (HPPD-1) and 3,4-bis(4'-hydroxy- phenyl)pyrrole-2,5-dicarboxylic acid (HPPD-2). In initial cultivations using marine broth, only low contents of these compounds have been isolated. Improving the conditions and growing the strain on artificial seawater supplemented with tryptone 10 g l(-1), yeast extract 5 g l(-1), L-tyrosine 0.6 g l(-1), glycine 1 g l(-1), and glucose 6 g l(-1), the growth-associated HPPD-1 and HPPD-2 production of a 40-l batch cultivation reached the amounts of 47 mg l(-1) and 116 mg l(-1), respectively, after 65 h. Both compounds showed potent anti-tumor-promoting activities.


Subject(s)
Dicarboxylic Acids/chemistry , Dicarboxylic Acids/pharmacology , Halomonas/chemistry , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Dicarboxylic Acids/isolation & purification , Halomonas/metabolism
3.
Appl Environ Microbiol ; 66(8): 3125-33, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10919760

ABSTRACT

Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 10(3)- and 10(4)-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.


Subject(s)
Genetic Variation , Geologic Sediments/microbiology , Gram-Negative Bacteria/genetics , Seawater/microbiology , Thiosulfates/metabolism , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel/methods , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , Oxidation-Reduction , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 65(9): 3834-42, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10473383

ABSTRACT

The spatial heterogeneity of bacterial populations at a shallow-water hydrothermal vent in the Aegean Sea close to the island of Milos (Greece) was examined at two different times by using acridine orange staining for total cell counts, cultivation-based techniques, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments. Concurrent with measurements of geochemical parameters, samples were taken along a transect from the center of the vent to the surrounding area. Most-probable-number (MPN) counts of metabolically defined subpopulations generally constituted a minor fraction of the total cell counts; both counting procedures revealed the highest cell numbers in a transition zone from the strongly hydrothermally influenced sediments to normal sedimentary conditions. Total cell counts ranged from 3.2 x 10(5) cells ml(-1) in the water overlying the sediments to 6.4 x 10(8) cells g (wet weight) of sediment(-1). MPN counts of chemolithoautotrophic sulfur-oxidizing bacteria varied between undetectable and 1.4 x 10(6) cells g(-1). MPN counts for sulfate-reducing bacteria and dissimilatory iron-reducing bacteria ranged from 8 to 1.4 x 10(5) cells g(-1) and from undetectable to 1.4 x 10(6) cells g(-1), respectively. DGGE revealed a trend from a diverse range of bacterial populations which were present in approximately equal abundance in the transition zone to a community dominated by few populations close to the center of the vent. Temperature was found to be an important parameter in determining this trend. However, at one sampling time this trend was not discernible, possibly due to storm-induced disturbance of the upper sediment layers.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Ecosystem , Seawater/microbiology , Acridine Orange , Bacteria/growth & development , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Electrophoresis, Agar Gel/methods , Genes, rRNA , Gram-Negative Chemolithotrophic Bacteria , Greece , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Staining and Labeling , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/growth & development , Sulfur-Reducing Bacteria/isolation & purification , Water Microbiology
5.
Appl Environ Microbiol ; 65(9): 3843-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10473384

ABSTRACT

A shallow-water hydrothermal vent system in the Aegean Sea close to the island of Milos (Greece) was chosen to study the diversity and distribution of the chemolithoautotrophic sulfur-oxidizing bacterium Thiomicrospira. Cell numbers in samples from different regions around a solitary vent decreased toward the center of the vent (horizontal distribution), as well as with depth (vertical distribution), corresponding to an increase in temperature (from ca. 25 to 60 degrees C) and a decrease in pH (from ca. pH 7 to 5). Thiomicrospira was one of the most abundant culturable sulfur oxidizers and was even dominant in one region. Phylogenetic analysis of Thiomicrospira spp. present in the highest most-probable-number (MPN) dilutions revealed that most of the obtained sequences grouped in two new closely related clusters within the Thiomicrospira branch. Two different new isolates, i.e., Milos-T1 and Milos-T2, were obtained from high-dilution (10(-5)) enrichments. Phylogenetic analysis indicated that isolate Milos-T1 is related to the recently described Thiomicrospira kuenenii and Hydrogenovibrio marinus, whereas isolate Milos-T2 grouped with the MPN sequences of cluster 2. The predominance of strain Milos-T2 was indicated by its identification in several environmental samples by hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns and by sequencing of one of the corresponding bands, i.e., ML-1, from the DGGE gel. The results shown in this paper support earlier indications that Thiomicrospira species are important members of hydrothermal vent communities.


Subject(s)
Ecosystem , Gammaproteobacteria/isolation & purification , Gram-Negative Chemolithotrophic Bacteria/isolation & purification , Gram-Negative Chemolithotrophic Bacteria/physiology , Seawater/microbiology , Sulfur/metabolism , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Electrophoresis, Agar Gel/methods , Gammaproteobacteria/genetics , Gammaproteobacteria/physiology , Gram-Negative Chemolithotrophic Bacteria/genetics , Greece , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Water Microbiology
6.
Int J Syst Bacteriol ; 49 Pt 2: 385-92, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10319459

ABSTRACT

Two new members of the genus Thiomicrospira were isolated from an intertidal mud flat sample with thiosulfate as the electron donor and CO2 as carbon source. On the basis of differences in genotypic and phenotypic characteristics, it is proposed that strain JB-A1T (= DSM 12350T) and strain JB-A2T (= DSM 12351T) are members of two new species, Thiomicrospira kuenenii and Thiomicrospira frisia, respectively. The cells were Gram-negative vibrios or slightly bent rods. Strain JB-A1T was highly motile, whereas strain JB-A2T showed a much lower degree of motility combined with a strong tendency to form aggregates. Both organisms were obligately autotrophic and strictly aerobic. Nitrate was not used as electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. Neither isolate was able to grow heterotrophically. For strain JB-A1T, growth was observed between pH values of 4.0 and 7.5 with an optimum at pH 6.0, whereas for strain JB-A2T, growth was observed between pH 4.2 and 8.5 with an optimum at pH 6.5. The temperature limits for growth were between 3.5 and 42 degrees C and 3.5 and 39 degrees C, respectively. The optimum growth temperature for strain JB-A1T was between 29 and 33.5 degrees C, whereas strain JB-A2T showed optimal growth between 32 and 35 degrees C. The mean maximum growth rate on thiosulfate was 0.35 h-1 for strain JB-A1T and 0.45 h-1 for strain JB-A2T.


Subject(s)
Geologic Sediments/microbiology , Gram-Negative Chemolithotrophic Bacteria/classification , Sulfur/metabolism , Water Microbiology , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Gram-Negative Chemolithotrophic Bacteria/genetics , Gram-Negative Chemolithotrophic Bacteria/isolation & purification , Gram-Negative Chemolithotrophic Bacteria/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Seawater
7.
Int J Syst Bacteriol ; 49 Pt 2: 875-9, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10319513

ABSTRACT

A new member of the genus Thiomicrospira, which utilizes thiosulfate as the electron donor and CO2 as the carbon source, was isolated from a sediment sample dominated by the filamentous sulfur bacterium Thioploca. Although the physiological properties investigated are nearly identical to other described species of the genus, it is proposed that strain Ch-1T is a member of a new species, Thiomicrospira chilensis sp. nov., on the basis of differences in genotypic characteristics (16S rRNA sequence, DNA homology, G + C content). Strain Ch-1T was highly motile with a slight tendency to form aggregates in the stationary growth phase. The organism was obligately autotrophic and strictly aerobic. Nitrate was not used as an electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. The isolate was not able to grow heterotrophically. Growth of strain Ch-1T was observed between pH 5.3 and 8.5 with an optimum at pH 7.0. The temperature range for growth was between 3.5 and 42 degrees C; the optimal growth temperature was between 32 and 37 degrees C. The mean maximum growth rate on thiosulfate was 0.4 h-1. This is the second Thiomicrospira species described that has a rod-shaped morphology; therefore discrimination between vibrio-shaped Thiomicrospira and rod-shaped Thiobacilli is no longer valid.


Subject(s)
Geologic Sediments/microbiology , Gram-Negative Chemolithotrophic Bacteria/classification , Sulfur/metabolism , Water Microbiology , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Gram-Negative Chemolithotrophic Bacteria/isolation & purification , Gram-Negative Chemolithotrophic Bacteria/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
8.
Science ; 284(5413): 493-5, 1999 Apr 16.
Article in English | MEDLINE | ID: mdl-10205058

ABSTRACT

A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to

Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Geologic Sediments/microbiology , Nitrates/metabolism , Sulfides/metabolism , Sulfur/analysis , Bacteria/classification , Bacteria/cytology , Cytoplasm/ultrastructure , Genes, rRNA , Microscopy, Electron , Molecular Sequence Data , Namibia , Nitrates/analysis , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sulfur/metabolism , Terminology as Topic , Vacuoles/chemistry , Vacuoles/ultrastructure
9.
Appl Environ Microbiol ; 64(12): 4650-7, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9835544

ABSTRACT

Recently, four Thiomicrospira strains were isolated from a coastal mud flat of the German Wadden Sea (T. Brinkhoff and G. Muyzer, Appl. Environ. Microbiol. 63:3789-3796, 1997). Here we describe the use of a polyphasic approach to investigate the functional role of these closely related bacteria. Microsensor measurements showed that there was oxygen penetration into the sediment to a depth of about 2.0 mm. The pH decreased from 8.15 in the overlaying water to a minimum value of 7.3 at a depth of 1.2 mm. Further down in the sediment the pH increased to about 7.8 and remained constant. Most-probable-number (MPN) counts of chemolithoautotrophic sulfur-oxidizing bacteria revealed nearly constant numbers along the vertical profile; the cell concentration ranged from 0.93 x 10(5) to 9.3 x 10(5) cells per g of sediment. A specific PCR was used to detect the presence of Thiomicrospira cells in the MPN count preparations and to determine their 16S rRNA sequences. The concentration of Thiomicrospira cells did not decrease with depth. It was found that Thiomicrospira strains were not dominant sulfur-oxidizing bacteria in this habitat. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments followed by hybridization analysis with a genus-specific oligonucleotide probe revealed the diversity of Thiomicrospira strains in the MPN cultures. Sequence analysis of the highest MPN dilutions in which the genus Thiomicrospira was detected revealed that there were four clusters of several closely related sequences. Only one of the 10 Thiomicrospira sequences retrieved was related to sequences of known isolates from the same habitat. Slot blot hybridization of rRNA isolated from different sediment layers showed that, in contrast to the concentration of Thiomicrospira cells, the concentration of Thiomicrospira-specific rRNA decreased rapidly in the region below the oxic layer of the sediment. This study revealed the enormous sequence diversity of closely related microorganisms present in one habitat, which so far has been found only by sequencing molecular isolates. In addition, it showed that most of the Thiomicrospira populations in the sediment studied were quiescent.

10.
Arch Microbiol ; 170(5): 345-52, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9818354

ABSTRACT

Five strains of lithotrophic, nitrite-oxidizing bacteria (AN1-AN5) were isolated from sediments of three soda lakes (Kunkur Steppe, Siberia; Crater Lake and Lake Nakuru, Kenya) and from a soda soil (Kunkur Steppe, Siberia) after enrichment at pH 10 with nitrite as sole electron source. Morphologically, the isolates resembled representatives of the genus Nitrobacter. However, they differed from recognized species of this genus by the presence of an additional S-layer in their cell wall and by their unique capacity to grow and oxidize nitrite under highly alkaline conditions. The influence of pH on growth of one of the strains (AN1) was investigated in detail by using nitrite-limited continuous cultivation. Under such conditions, strain AN1 was able to grow at a broad pH range from 6.5 to 10.2, with an optimum at 9.5. Cells grown at pH higher than 9 exhibited a clear shift in the optimal operation of the nitrite-oxidizing system towards the alkaline pH region with respect to both reaction rates and the affinity. Cells grown at neutral pH values behaved more like neutrophilic Nitrobacter species. These data demonstrated the remarkable potential of the new nitrite-oxidizing bacteria for adaptation to varying alkaline conditions. The 16S rRNA gene sequences of isolates AN1, AN2, and AN4 showed high similarity (> or = 99.8%) to each other, and to sequences of Nitrobacter strain R6 and of Nitrobacter winogradskyi. However, the DNA-DNA homology in hybridization studies was too low to consider these isolates as new strains. Therefore, the new isolates from the alkaline habitats are described as a new species of the genus Nitrobacter, N. alkalicus, on the basis of their substantial morphological, physiological, and genetic differences from the recognized neutrophilic representatives of this genus.


Subject(s)
Nitrobacter/classification , Nitrobacter/isolation & purification , Adaptation, Physiological/drug effects , Alkalies/administration & dosage , Alkalies/pharmacology , Base Sequence , Cytochromes/analysis , Cytochromes/metabolism , DNA, Bacterial/analysis , Geologic Sediments/microbiology , Hydrogen-Ion Concentration , Microscopy, Electron , Molecular Sequence Data , Nitrates/metabolism , Nitrobacter/growth & development , Nitrobacter/metabolism , Nitrobacter/ultrastructure , Nucleic Acid Hybridization , Phylogeny , Polymerase Chain Reaction , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Soil Microbiology , Spectrophotometry , Water Microbiology
11.
Appl Environ Microbiol ; 64(11): 4128-33, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9797256

ABSTRACT

In recent years interest in bacteriophages in aquatic environments has increased. Electron microscopy studies have revealed high numbers of phage particles (10(4) to 10(7) particles per ml) in the marine environment. However, the ecological role of these bacteriophages is still unknown, and the role of the phages in the control of bacterioplankton by lysis and the potential for gene transfer are disputed. Even the basic questions of the genetic relationships of the phages and the diversity of phage-host systems in aquatic environments have not been answered. We investigated the diversity of 22 phage-host systems after 85 phages were collected at one station near a German island, Helgoland, located in the North Sea. The relationships among the phages were determined by electron microscopy, DNA-DNA hybridization, and host range studies. On the basis of morphology, 11 phages were assigned to the virus family Myoviridae, 7 phages were assigned to the family Siphoviridae, and 4 phages were assigned to the family Podoviridae. DNA-DNA hybridization confirmed that there was no DNA homology between phages belonging to different families. We found that the 22 marine bacteriophages belonged to 13 different species. The host bacteria were differentiated by morphological and physiological tests and by 16S ribosomal DNA sequencing. All of the bacteria were gram negative, facultatively anaerobic, motile, and coccoid. The 16S rRNA sequences of the bacteria exhibited high levels of similarity (98 to 99%) with the sequences of organisms belonging to the genus Pseudoalteromonas, which belongs to the gamma subdivision of the class Proteobacteria.


Subject(s)
Bacteria/virology , Caudovirales/classification , Seawater/virology , Caudovirales/isolation & purification , Caudovirales/ultrastructure , Oceans and Seas , Phylogeny , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics
12.
Appl Environ Microbiol ; 64(10): 4057-9, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9758841

ABSTRACT

A new autotrophic Thiomicrospira strain, MA-3, was isolated from the surface of a polymetal sulfide deposit collected at a Mid-Atlantic Ridge hydrothermal vent site. The DNA homology among three vent isolates, Thiomicrospira crunogena, Thiomicrospira sp. strain L-12, and Thiomicrospira sp. strain MA-3, was 99.3% or higher, grouping them as the same species, T. crunogena (type strain, ATCC 35932). The fact that T. crunogena and Thiomicrospira sp. strain L-12 were isolated from Pacific vent sites demonstrates a cosmopolitan distribution of this species.

13.
Appl Environ Microbiol ; 63(10): 3789-96, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9327542

ABSTRACT

We combined traditional cultivation methods and new molecular techniques to study the diversity and habitat range of bacteria of the genus Thiomicrospira. Specific primers were designed and used in the PCR to amplify the 16S ribosomal DNA (rDNA) of Thiomicrospira spp. and thus detect the presence of these bacteria in environmental samples and enrichment cultures. By using this genus-specific PCR, we were able to amplify 722-bp-long 16S rDNA fragments from different saltwater habitats as well as from a freshwater ecosystem. Furthermore, we were able to isolate most of these bacteria in pure culture by using enrichment cultures for chemolithoautotrophic sulfur-oxidizing bacteria. With denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments followed by hybridization analysis with one of the primers as a genus-specific probe, it was possible to monitor the success of isolation. The combined approach resulted in the isolation of several chemolithoautotrophic bacteria from different habitats: e.g., a coastal sediment along the coast of Chile, a microbial mat of the hypersaline pond Solar Lake (Sinai, Egypt), and the saline spring Artern (Thuringia, Germany). In addition, four different isolates were obtained from sediment and water samples taken at Jadebusen, which is part of the German Waddensea. Comparative analysis of the nearly complete 16S rRNA sequences of these isolates indicated several new species, all grouping with the Thiomicrospira species of the gamma subdivision of the class Proteobacteria. A freshwater Thiomicrospira species could not be isolated, but sequence analysis of the PCR product obtained after amplification of the environmental DNA with the Thiomicrospira-specific primers revealed its phylogenetic affiliation. The study indicates an increased species diversity of Thiomicrospira and the ubiquity of this sulfur-oxidizing bacterium in habitats with reduced sulfur compounds.


Subject(s)
Gram-Negative Chemolithotrophic Bacteria/genetics , Gram-Negative Chemolithotrophic Bacteria/metabolism , Base Sequence , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Ecosystem , Environmental Microbiology , Fresh Water/microbiology , Genetic Variation , Gram-Negative Chemolithotrophic Bacteria/isolation & purification , Nucleic Acid Hybridization , Phylogeny , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/statistics & numerical data , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Species Specificity , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...