Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 26(24): 4506-4536, 2019.
Article in English | MEDLINE | ID: mdl-31119997

ABSTRACT

Traditionally, natural medicines have been administered as plant extracts, which are composed of a mixture of molecules. The individual molecular species in this mixture may or may not contribute to the overall medicinal effects and some may even oppose the beneficial activity of others. To better control therapeutic effects, studies that characterized specific molecules and describe their individual activity that have been performed over the past decades. These studies appear to underline that natural products are particularly effective as antioxidants and anti-inflammatory agents. In this systematic review we aimed to identify potent anti-inflammatory natural products and relate their efficacy to their chemical structure and physicochemical properties. To identify these compounds, we performed a comprehensive literature search to find those studies, in which a dose-response description and a positive control reference compound was used to benchmark the observed activity. Of the analyzed papers, 7% of initially selected studies met these requirements and were subjected to further analysis. This analysis revealed that most selected natural products indeed appeared to possess anti-inflammatory activities, in particular anti-oxidative properties. In addition, 14% of the natural products outperformed the remaining natural products in all tested assays and are attractive candidates as new anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents/chemistry , Biological Products/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Biological Products/therapeutic use , Coumarins/chemistry , Coumarins/therapeutic use , Edema/drug therapy , Edema/pathology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Porphyrins/chemistry , Porphyrins/therapeutic use , Structure-Activity Relationship
3.
Mol Pharm ; 9(6): 1620-7, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22536790

ABSTRACT

Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinson's and Alzheimer's, is expected to grow and, hence, the demand for adequate treatment modalities. However, the delivery of medicines into the brain for the treatment of brain-related diseases is hampered by the presence of a tight layer of endothelial cells that forms the blood-brain barrier (BBB). Furthermore, most conventional drugs lack stability and/or bioavailability. These obstacles can be overcome by the application of nanocarriers, in which the therapeutic entity has been incorporated, provided that they are effectively targeted to the brain endothelial cell layer. Drug nanocarriers decorated with targeting ligands that bind BBB receptors may accumulate efficiently at/in brain microvascular endothelium and hence represent a promising tool for brain drug delivery. Following the accumulation of drug nanocarriers at the brain vasculature, the drug needs to be transported across the brain endothelial cells into the brain. Transport across brain endothelial cells can occur via passive diffusion, transport proteins, and the vesicular transport pathways of receptor-mediated and adsorptive-mediated transcytosis. When a small lipophilic drug is released from its carrier at the brain vasculature, it may enter the brain via passive diffusion. On the other hand, the passage of intact nanocarriers, which is necessary for the delivery of larger and more hydrophilic drugs into brain, may occur via active transport by means of transcytosis. In previous work we identified GM1 ganglioside and prion protein as potential transcytotic receptors at the BBB. GM1 is a glycosphingolipid that is ubiquitously present on the endothelial surface and capable of acting as the transcytotic receptor for cholera toxin B. Likewise, prion protein has been shown to have transcytotic capacity at brain endothelial cells. Here we determine the transcytotic potential of polymersome nanocarriers functionalized with GM1- and prion-targeting peptides (G23, P50 and P9), that were identified by phage display, in an in vitro BBB model. In addition, the biodistribution of polymersomes functionalized with either the prion-targeting peptide P50 or the GM1-targeting peptide G23 is determined following intravenous injection in mice. We show that the prion-targeting peptides do not induce efficient transcytosis of polymersomes across the BBB in vitro nor induce accumulation of polymersomes in the brain in vivo. In contrast, the G23 peptide is shown to have transcytotic capacity in brain endothelial cells in vitro, as well as a brain-targeting potential in vivo, as reflected by the accumulation of G23-polymersomes in the brain in vivo at a level comparable to that of RI7217-polymersomes, which are targeted toward the transferrin receptor. Thus the G23 peptide seems to serve both of the requirements that are needed for efficient brain drug delivery of nanocarriers. An unexpected finding was the efficient accumulation of G23-polymersomes in lung. In conclusion, because of its combined brain-targeting and transcytotic capacity, the G23 peptide could be useful in the development of targeted nanocarriers for drug delivery into the brain, but appears especially attractive for specific drug delivery to the lung.


Subject(s)
G(M1) Ganglioside/administration & dosage , G(M1) Ganglioside/pharmacokinetics , Prions/administration & dosage , Prions/pharmacokinetics , Administration, Intravenous , Animals , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Male , Mice , Mice, Inbred BALB C
4.
Bioconjug Chem ; 23(5): 958-65, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22463082

ABSTRACT

Polymersomes, self-assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive (111)In onto the surface and determine the biodistribution in mice as a function of both the polymersome size and poly(ethylene glycol) corona thickness (i.e., PEG molecular weight). Doubling the PEG molecular weight from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size of the different polymersome samples did have a drastic effect on the blood circulation times. It was found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 h, presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of around 90 nm circulated much longer. After 24 h more than 30% of the injected dose was still present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These findings should be considered in the formulation and design of polymersomes for biomedical applications. Size, much more than for liposomes, will influence the pharmacokinetics, and therefore, long circulating preparations should be well below 100 nm.


Subject(s)
Butadienes/pharmacokinetics , Elastomers/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Animals , Butadienes/administration & dosage , Butadienes/chemistry , Elastomers/administration & dosage , Elastomers/chemistry , Indium Radioisotopes/analysis , Liposomes/pharmacokinetics , Male , Mice , Mice, Inbred BALB C , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
5.
Langmuir ; 28(4): 2049-55, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22185241

ABSTRACT

Polydiacetylenes have received much attention due to their intrinsic optical properties. Their inclination to change color in response to environmental factors has been extensively exploited in the sensing of analytes. In this study we functionalized diacetylene-containing peptide amphiphiles and phospholipids with α-bromo esters so that they could be used as initiators in atom transfer radical polymerization (ATRP) reactions. Subsequently, the supramolecular assemblies formed by these molecules upon their addition to water, namely peptide amphiphile fibers and liposomes, were stabilized by polymerizing the diacetylene moieties present in the molecules. As a result, highly colored, disassembly resistant, macro initiators were created. To investigate whether steric crowding on the surface of these assemblies could influence the color of the polydiacetylenes, we utilized the initiator functionality that had been introduced prior to assembly in ATRP. We found that the chromatic properties of the polydiacetylenes were directly related to the formation of polymer on the surface of peptide amphiphile fibers as well as liposomes. Furthermore, we were able to demonstrate that the progress of this color change could be monitored with UV-visible spectroscopy.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Peptides/chemistry , Polymerization , Polymers/chemistry , Polyynes/chemistry , Color , Polyacetylene Polymer
6.
Chem Commun (Camb) ; (30): 3136-8, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17653366

ABSTRACT

Polymersomes, composed of amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA), with the periphery being covered with azide groups, were used for further functionalization using "click" chemistry.


Subject(s)
Acrylic Resins/chemistry , Azides/chemistry , Polystyrenes/chemistry , Acrylic Resins/chemical synthesis , Green Fluorescent Proteins/chemistry , Polystyrenes/chemical synthesis , Streptavidin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...