Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(13): 14871-14886, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35344326

ABSTRACT

Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-ß (Aß) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aß fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aß40, OPE oxidized only Aß40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic ß-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins , Humans , Peptide Fragments/chemistry , Protein Conformation, beta-Strand
2.
ACS Chem Neurosci ; 11(22): 3761-3771, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33141569

ABSTRACT

Amyloid protein aggregates are pathological hallmarks of neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's (PD) diseases and are believed to be formed well before the onset of neurodegeneration and cognitive impairment. Monitoring the course of protein aggregation is thus vital to understanding and combating these diseases. We have recently demonstrated that a novel class of fluorescence sensors, oligomeric p-phenylene ethynylene (PE)-based electrolytes (OPEs) selectively bind to and detect prefibrillar and fibrillar aggregates of AD-related amyloid-ß (Aß) peptides over monomeric Aß. In this study, we investigated the binding between two OPEs, anionic OPE12- and cationic OPE24+, and to two different ß-sheet rich Aß oligomers using classical all-atom molecular dynamics simulations. Our simulations have revealed a number of OPE binding sites on Aß oligomer surfaces, and these sites feature hydrophobic amino acids as well as oppositely charged amino acids. Binding energy calculations show energetically favorable interactions between both anionic and cationic OPEs with Aß oligomers. Moreover, OPEs bind as complexes as well as single molecules. Compared to free OPEs, Aß protofibril bound OPEs show backbone planarization with restricted rotations and reduced hydration of the ethyl ester end groups. These characteristics, along with OPE complexation, align with known mechanisms of binding induced OPE fluorescence turn-on and spectral shifts from a quenched, unbound state in aqueous solutions. This study thus sheds light on the molecular-level details of OPE-Aß protofibril interactions and provides a structural basis for fluorescence turn-on sensing modes of OPEs.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloidogenic Proteins , Biophysical Phenomena , Humans , Molecular Dynamics Simulation , Protein Conformation, beta-Strand
SELECTION OF CITATIONS
SEARCH DETAIL
...