Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Mol Neurodegener ; 19(1): 54, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026372

ABSTRACT

Abnormal accumulation of misfolded and hyperphosphorylated tau protein in brain is the defining feature of several neurodegenerative diseases called tauopathies, including Alzheimer's disease (AD). In AD, this pathological change is reflected by highly specific cerebrospinal fluid (CSF) tau biomarkers, including both phosphorylated and non-phosphorylated variants. Interestingly, despite tau pathology being at the core of all tauopathies, CSF tau biomarkers remain unchanged in certain tauopathies, e.g., progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal neurodegeneration (CBD). To better understand commonalities and differences between tauopathies, we report a multiplex assay combining immunoprecipitation and high-resolution mass spectrometry capable of detecting and quantifying peptides from different tau protein isoforms as well as non-phosphorylated and phosphorylated peptides, including those carrying multiple phosphorylations. We investigated the tau proteoforms in soluble and insoluble fractions of brain tissue from subjects with autopsy-confirmed tauopathies, including sporadic AD (n = 10), PSP (n = 11), PiD (n = 10), and CBD (n = 10), and controls (n = 10). Our results demonstrate that non-phosphorylated tau profiles differ across tauopathies, generally showing high abundance of microtubule-binding region (MTBR)-containing peptides in insoluble protein fractions compared with controls; the AD group showed 12-72 times higher levels of MTBR-containing aggregates. Quantification of tau isoforms showed the 3R being more abundant in PiD and the 4R isoform being more abundant in CBD and PSP in the insoluble fraction. Twenty-three different phosphorylated peptides were quantified. Most phosphorylated peptides were measurable in all investigated tauopathies. All phosphorylated peptides were significantly increased in AD insoluble fraction. However, doubly and triply phosphorylated peptides were significantly increased in AD even in the soluble fraction. Results were replicated using a validation cohort comprising AD (n = 10), CBD (n = 10), and controls (n = 10). Our study demonstrates that abnormal levels of phosphorylation and aggregation do indeed occur in non-AD tauopathies, however, both appear pronouncedly increased in AD, becoming a distinctive characteristic of AD pathology.


Subject(s)
Brain , Tauopathies , tau Proteins , Humans , tau Proteins/metabolism , Tauopathies/metabolism , Aged , Brain/metabolism , Brain/pathology , Male , Female , Middle Aged , Phosphorylation , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aged, 80 and over , Supranuclear Palsy, Progressive/metabolism , Protein Isoforms/metabolism
2.
Acta Neuropathol ; 148(1): 8, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026031

ABSTRACT

Alzheimer's disease (AD) is characterized by extracellular amyloid plaques containing amyloid-ß (Aß) peptides, intraneuronal neurofibrillary tangles, extracellular neuropil threads, and dystrophic neurites surrounding plaques composed of hyperphosphorylated tau protein (pTau). Aß can also deposit in blood vessel walls leading to cerebral amyloid angiopathy (CAA). While amyloid plaques in AD brains are constant, CAA varies among cases. The study focuses on differences observed between rare and poorly studied patient groups with APP duplications (APPdup) and Down syndrome (DS) reported to have higher frequencies of elevated CAA levels in comparison to sporadic AD (sAD), most of APP mutations, and controls. We compared Aß and tau pathologies in postmortem brain tissues across cases and Aß peptides using mass spectrometry (MS). We further characterized the spatial distribution of Aß peptides with MS-brain imaging. While intraparenchymal Aß deposits were numerous in sAD, DS with AD (DS-AD) and AD with APP mutations, these were less abundant in APPdup. On the contrary, Aß deposits in the blood vessels were abundant in APPdup and DS-AD while only APPdup cases displayed high Aß deposits in capillaries. Investigation of Aß peptide profiles showed a specific increase in Aßx-37, Aßx-38 and Aßx-40 but not Aßx-42 in APPdup cases and to a lower extent in DS-AD cases. Interestingly, N-truncated Aß2-x peptides were particularly increased in APPdup compared to all other groups. This result was confirmed by MS-imaging of leptomeningeal and parenchymal vessels from an APPdup case, suggesting that CAA is associated with accumulation of shorter Aß peptides truncated both at N- and C-termini in blood vessels. Altogether, this study identified striking differences in the localization and composition of Aß deposits between AD cases, particularly APPdup and DS-AD, both carrying three genomic copies of the APP gene. Detection of specific Aß peptides in CSF or plasma of these patients could improve the diagnosis of CAA and their inclusion in anti-amyloid immunotherapy treatments.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Brain , Cerebral Amyloid Angiopathy , Down Syndrome , Humans , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/genetics , Down Syndrome/complications , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/pathology , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Female , Aged , Middle Aged , Brain/pathology , Brain/metabolism , tau Proteins/metabolism , Aged, 80 and over , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism
3.
Nat Commun ; 15(1): 2615, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521766

ABSTRACT

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Neuropathology , Plasma , Neurofibrillary Tangles , Autopsy , tau Proteins , Biomarkers , Amyloid beta-Peptides
4.
J Neurochem ; 168(7): 1254-1264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38362804

ABSTRACT

Brain amyloid-ß (Aß) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aß40 peptide, whereas Aß42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aß isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aß isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aß1-34, Aß1-37, Aß1-38, Aß1-39, Aß1-40, and Aß1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aß peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aß1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aß1-42, none of the Aß peptides were decreased in AD-like subjects compared with controls. All Aß peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aß1-42 in the model (since decreased Aß1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aß profiles. Peptides shorter than Aß1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aß accumulation. This study supports the potential use of this panel of CSF Aß peptides to indicate presence of CAA pathology with high accuracy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Female , Male , Aged , Biomarkers/cerebrospinal fluid , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Peptide Fragments/cerebrospinal fluid , Aged, 80 and over
5.
Mol Cell Proteomics ; 23(2): 100721, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246483

ABSTRACT

Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Brain/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism
6.
Acta Neuropathol ; 147(1): 12, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184490

ABSTRACT

Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n = 47), an unselected clinical cohort (n = 212) and a research cohort well-characterized by fluid and imaging biomarkers (n = 262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid (Aß) and tau pathology positive (A+T+) cases (P < 0.01). In A+ cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205 = 0.67, rSp202 = 0.45) than Aß-PET (rSp205 = 0.40, rSp202 = 0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P < 0.01), whereas p-tau202 only increased in Braak V-VI (P < 0.0001). Both showed stronger regional associations with tau-PET than with Aß-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aß and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2 = 69.7%; CSF p-tau202: R2 = 85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205 = - 0.36, rSp202 = - 0.33) and regionally, and correlated with cognition (rSp205 = - 0.38/- 0.40, rSp202 = - 0.20/- 0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.


Subject(s)
Alzheimer Disease , Humans , Neurofibrillary Tangles , Amyloidogenic Proteins , Antibodies , Biomarkers
7.
Acta Neuropathol ; 147(1): 5, 2023 12 30.
Article in English | MEDLINE | ID: mdl-38159140

ABSTRACT

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , tau Proteins , Autopsy , Biomarkers
9.
Nat Aging ; 3(6): 661-669, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198279

ABSTRACT

Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alzheimer Disease/diagnosis , Amyloidogenic Proteins , Biomarkers , Brain/pathology , tau Proteins
10.
Acta Neuropathol Commun ; 11(1): 87, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37259128

ABSTRACT

The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aß peptide, which is generated by consecutive cleavages of ß- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the ß- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aß profiles. Importantly, N-terminally truncated Aß peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aß40/Aß42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aß1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, ß-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Mutation/genetics , Presenilin-1/genetics
11.
Alzheimers Dement ; 19(10): 4609-4618, 2023 10.
Article in English | MEDLINE | ID: mdl-36946611

ABSTRACT

INTRODUCTION: Secernin-1 (SCRN1) is a neuronal protein that co-localizes with neurofibrillary tangles in Alzheimer's disease (AD), but not with tau inclusions in corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or Pick's disease. METHODS: We measured SCRN1 concentration in cerebrospinal fluid (CSF) using a novel mass spectrometric parallel reaction monitoring method in three clinical cohorts comprising patients with neurochemically characterized AD (n = 25) and controls (n = 28), clinically diagnosed Parkinson's disease (PD; n = 38), multiple system atrophy (MSA; n = 31), PSP (n = 20), CBD (n = 8), healthy controls (n = 37), and neuropathology-confirmed AD (n = 47). RESULTS: CSF SCRN1 was significantly increased in AD (P < 0.01, fold change = 1.4) compared to controls (receiver operating characteristic area under the curve = 0.78) but not in CBD, PSP, PD, or MSA. CSF SCRN1 positively correlated with CSF total tau (R = 0.78, P = 1.1 × 10-13 ), phosphorylated tau181 (R = 0.64, P = 3.2 × 10-8 ), and Braak stage and negatively correlated with Mini-Mental State Examination score. DISCUSSION: CSF SCRN1 is a candidate biomarker of AD, reflecting tau pathology. HIGHLIGHTS: We developed a parallel reaction monitoring assay to measure secernin-1 (SCRN1) in cerebrospinal fluid (CSF). CSF SCRN1 was increased in Alzheimer's disease compared to healthy controls. CSF SCRN1 remained unchanged in Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, or corticobasal degeneration compared to controls. CSF SCRN1 correlated strongly with CSF phosphorylated tau and total tau. CSF SCRN1 increased across Braak stages and negatively correlated with Mini-Mental State Examination score.


Subject(s)
Alzheimer Disease , Nerve Tissue Proteins , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Corticobasal Degeneration/cerebrospinal fluid , Corticobasal Degeneration/metabolism , Corticobasal Degeneration/pathology , Multiple System Atrophy/cerebrospinal fluid , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Nerve Tissue Proteins/cerebrospinal fluid , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism
12.
J Alzheimers Dis ; 92(2): 467-475, 2023.
Article in English | MEDLINE | ID: mdl-36776062

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) share pathogenic pathways related to amyloid-ß deposition. Whereas AD is known to affect synaptic function, such an association for CAA remains yet unknown. OBJECTIVE: We therefore aimed to investigate synaptic dysfunction in CAA. METHODS: Multiple reaction monitoring mass spectrometry was used to quantify cerebrospinal fluid (CSF) concentrations of 15 synaptic proteins in CAA and AD patients, and age- and sex-matched cognitively unimpaired controls. RESULTS: We included 25 patients with CAA, 49 patients with AD, and 25 controls. Only neuronal pentraxin-2 levels were decreased in the CSF of CAA patients compared with controls (p = 0.04). CSF concentrations of 12 other synaptic proteins were all increased in AD compared with CAA or controls (all p≤0.01) and were unchanged between CAA and controls. Synaptic protein concentrations in the subgroup of CAA patients positive for AD biomarkers (CAA/ATN+; n = 6) were similar to AD patients, while levels in CAA/ATN- (n = 19) were comparable with those in controls. A regression model including all synaptic proteins differentiated CAA from AD at high accuracy levels (area under the curve 0.987). CONCLUSION: In contrast to AD, synaptic CSF biomarkers were found to be largely unchanged in CAA. Moreover, concomitant AD pathology in CAA is associated with abnormal synaptic protein levels. Impaired synaptic function in AD was confirmed in this independent cohort. Our findings support an apparent differential involvement of synaptic dysfunction in CAA and AD and may reflect distinct pathological mechanisms.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/pathology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid
13.
Ann Neurol ; 93(6): 1173-1186, 2023 06.
Article in English | MEDLINE | ID: mdl-36707720

ABSTRACT

OBJECTIVE: Vascular amyloid ß (Aß) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aß38, Aß40, Aß42, and Aß43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS: Aß peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS: We found decreased levels of all Aß peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aß42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aß43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aß peptides except Aß43 were also decreased in sCAA compared to AD (CSF Aß38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aß40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aß42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION: A combined biomarker panel of CSF Aß38, Aß40, Aß42, and Aß43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid
14.
medRxiv ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168323

ABSTRACT

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.

15.
Mol Neurodegener ; 17(1): 81, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510321

ABSTRACT

BACKGROUND: Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement. METHODS: We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n = 38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p < 0.001, AUC = 0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia and other neurodegenerative disorders. RESULTS: Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aß positron emission tomography-positive patients with mild cognitive impairment compared with Aß-negative controls. For Alzheimer's disease dementia compared with Aß-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also discriminated between Aß-positive and Aß-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: AUC = 71.11%, fold change = 1.70). CONCLUSIONS: While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/metabolism , Phosphorylation , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
16.
Alzheimers Res Ther ; 14(1): 161, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36324176

ABSTRACT

OBJECTIVE: The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS: We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without ß-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS: In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION: These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.


Subject(s)
Alzheimer Disease , Humans , Animals , Rats , Alzheimer Disease/cerebrospinal fluid , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Genotype
17.
Mol Neurobiol ; 59(11): 7056-7073, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36076005

ABSTRACT

Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-ß peptides Aß40 and Aß42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aß in the APP sequence resulted in a concomitant significant increase in the production of shorter Aß peptides. Mass spectrometry (MS) confirmed the predominance of Aßx-33 and Aßx-34 with the APPK28A mutant. The enzymatic activity of α-, ß-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aß40 and Aß42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aß derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aß species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/metabolism , Amino Acids , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Binding Sites , Cholesterol , HEK293 Cells , Humans , Mutation/genetics
18.
J Neurochem ; 163(3): 233-246, 2022 11.
Article in English | MEDLINE | ID: mdl-36102248

ABSTRACT

Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/ß-amyloid (Aß) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aß, while in contrast no Aß deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aß co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aß x-42 and Aß x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aß. When compared with FDD, Aß in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aß3pE-40 and Aß3-40 but not with Aßx-42 species. This suggests an increased aggregation propensity of Aß in FDD that promotes co-aggregation of both Aß and ADan. Further, CAA maturity appears to be mainly governed by Aß content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.


Subject(s)
Alzheimer Disease , Amyloid Neuropathies, Familial , Cerebral Amyloid Angiopathy , Dementia , Humans , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/genetics , Dementia/pathology , Denmark , Membrane Glycoproteins/metabolism , Plaque, Amyloid , England
19.
J Neurosci ; 42(33): 6453-6468, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35835549

ABSTRACT

Individuals who have Down syndrome (DS) frequently develop early onset Alzheimer's disease (AD), a neurodegenerative condition caused by the buildup of aggregated amyloid-ß (Aß) and tau proteins in the brain. Aß is produced by amyloid precursor protein (APP), a gene located on chromosome 21. People who have DS have three copies of chromosome 21 and thus also an additional copy of APP; this genetic change drives the early development of AD in these individuals. Here we use a combination of next-generation mouse models of DS (Tc1, Dp3Tyb, Dp(10)2Yey and Dp(17)3Yey) and a knockin mouse model of Aß accumulation (AppNL-F ) to determine how chromosome 21 genes, other than APP, modulate APP/Aß in the brain when in three copies. Using both male and female mice, we demonstrate that three copies of other chromosome 21 genes are sufficient to partially ameliorate Aß accumulation in the brain. We go on to identify a subregion of chromosome 21 that contains the gene(s) causing this decrease in Aß accumulation and investigate the role of two lead candidate genes, Dyrk1a and Bace2 Thus, an additional copy of chromosome 21 genes, other than APP, can modulate APP/Aß in the brain under physiological conditions. This work provides critical mechanistic insight into the development of disease and an explanation for the typically later age of onset of dementia in people who have AD in DS, compared with those who have familial AD caused by triplication of APP SIGNIFICANCE STATEMENT Trisomy of chromosome 21 is a commonly occurring genetic risk factor for early-onset Alzheimer's disease (AD), which has been previously attributed to people with Down syndrome having three copies of the amyloid precursor protein (APP) gene, which is encoded on chromosome 21. However, we have shown that an extra copy of other chromosome 21 genes modifies AD-like phenotypes independently of APP copy number (Wiseman et al., 2018; Tosh et al., 2021). Here, we use a mapping approach to narrow down the genetic cause of the modulation of pathology, demonstrating that gene(s) on chromosome 21 decrease Aß accumulation in the brain, independently of alterations to full-length APP or C-terminal fragment abundance and that just 38 genes are sufficient to cause this.


Subject(s)
Alzheimer Disease , Down Syndrome , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Brain/metabolism , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/genetics , Female , Humans , Male , Mice
20.
Nat Rev Neurol ; 18(7): 400-418, 2022 07.
Article in English | MEDLINE | ID: mdl-35585226

ABSTRACT

Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Biomarkers/cerebrospinal fluid , Humans , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...