Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36522507

ABSTRACT

Eye movements are a critical component of visually guided behaviours, allowing organisms to scan the environment and bring stimuli of interest to regions of acuity in the retina. Although the control and modulation of eye movements by cranial nerve nuclei are highly conserved across vertebrates, species variation in visually guided behaviour and eye morphology could lead to variation in the size of oculomotor nuclei. Here, we test for differences in the size and neuron numbers of the oculomotor nuclei among birds that vary in behaviour and eye morphology. Using unbiased stereology, we measured the volumes and numbers of neurons of the oculomotor (nIII), trochlear (nIV), abducens (nVI), and Edinger-Westphal (EW) nuclei across 71 bird species and analysed these with phylogeny-informed statistics. Owls had relatively smaller nIII, nIV, nVI and EW nuclei than other birds, which reflects their limited degrees of eye movements. In contrast, nVI was relatively larger in falcons and hawks, likely reflecting how these predatory species must shift focus between the central and temporal foveae during foraging and prey capture. Unexpectedly, songbirds had an enlarged EW and relatively more nVI neurons, which might reflect accommodation and horizontal eye movements. Finally, the one merganser we measured also has an enlarged EW, which is associated with the high accommodative power needed for pursuit diving. Overall, these differences reflect species and clade level variation in behaviour, but more data are needed on eye movements in birds across species to better understand the relationships among behaviour, retinal anatomy, and brain anatomy.


Subject(s)
Eye Movements , Oculomotor Nerve , Animals , Oculomotor Nerve/physiology , Brain Stem/physiology , Brain , Birds
2.
Sci Rep ; 12(1): 21412, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496546

ABSTRACT

Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring.


Subject(s)
Epilepsy , Wearable Electronic Devices , Humans , Data Accuracy , Reproducibility of Results , Seizures , Epilepsy/diagnosis
3.
Epilepsy Res ; 129: 157-161, 2017 01.
Article in English | MEDLINE | ID: mdl-28073096

ABSTRACT

PURPOSE: Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). METHODS: We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. RESULTS: hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. CONCLUSIONS: hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization.


Subject(s)
Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/physiopathology , Electroencephalography , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Frontal Lobe/physiopathology , Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electroencephalography/methods , Epilepsy, Frontal Lobe/diagnostic imaging , Epilepsy, Frontal Lobe/surgery , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neurophysiological Monitoring , Preoperative Care , Retrospective Studies , Scalp , Tomography, Emission-Computed, Single-Photon , Treatment Outcome
4.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865297

ABSTRACT

There is growing interest in latitudinal effects on animal behaviour and life history. One recent focus is on birdsong, which is hypothesized to be more elaborated or complex in the north temperate zone compared with the tropics. Current evidence is mixed and based on cross-species comparisons, or single species with restricted distributions. We circumvent these limitations using a transcontinental sample of 358 songs from house wrens (Troglodytes aedon) at 281 locations spanning more than 100° of latitude (52° N-55° S) across the Americas. We found a significant latitudinal gradient in several basic elements of song performance and complexity between north temperate and tropical populations. Furthermore, we document convergence in song patterns between populations at higher latitudes in the Northern and Southern Hemispheres. Effects were strongest for the number of elements in a song, and the rate of element production, both increasing towards the poles, with similar but weaker effects for other song dimensions (e.g. number of unique elements, trills and trill rate). We consider possible causes related to variable habitats and morphology, concluding that the shorter breeding seasons at higher latitudes in both hemispheres may favour greater song elaboration to mediate territory competition and mate choice.


Subject(s)
Animal Distribution , Songbirds/physiology , Vocalization, Animal , Animals , Central America , Male , North America , South America , Territoriality
SELECTION OF CITATIONS
SEARCH DETAIL
...