Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 6(1): 43, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855358

ABSTRACT

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG+ memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated VH5-51/VL4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of VH5-51 and VL4-1 recognizes a common Pro-Xn-Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.


Subject(s)
B-Lymphocytes/metabolism , Immunoglobulin G/pharmacology , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Light Chains/metabolism , tau Proteins/immunology , tau Proteins/metabolism , Adolescent , Adult , Aged , Antibody Specificity , B-Lymphocytes/drug effects , Crystallization , Dose-Response Relationship, Drug , Female , Humans , Immunodominant Epitopes/metabolism , Male , Microglia/metabolism , Microscopy, Atomic Force , Middle Aged , Models, Molecular , Molecular Sequence Data , Protein Aggregates , Young Adult
2.
J Virol ; 88(17): 9538-52, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24965452

ABSTRACT

UNLABELLED: The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses. IMPORTANCE: The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.


Subject(s)
HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/metabolism , CD4 Antigens/metabolism , Female , Guinea Pigs , HIV Antibodies/blood , HIV Antibodies/metabolism , HIV-1/genetics , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
3.
Proc Natl Acad Sci U S A ; 111(1): 445-50, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24335589

ABSTRACT

The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/chemistry , Animals , Antibodies/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunologic Memory , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Kinetics , Mice , Mice, Inbred BALB C , Microscopy, Electron , Models, Molecular , Molecular Conformation , Species Specificity
4.
PLoS One ; 4(1): e4241, 2009.
Article in English | MEDLINE | ID: mdl-19156207

ABSTRACT

BACKGROUND: Humans are genetically defective in synthesizing the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc), but can metabolically incorporate it from dietary sources (particularly red meat and milk) into glycoproteins and glycolipids of human tumors, fetuses and some normal tissues. Metabolic incorporation of Neu5Gc from animal-derived cells and medium components also results in variable contamination of molecules and cells intended for human therapies. These Neu5Gc-incorporation phenomena are practically significant, because normal humans can have high levels of circulating anti-Neu5Gc antibodies. Thus, there is need for the sensitive and specific detection of Neu5Gc in human tissues and biotherapeutic products. Unlike monoclonal antibodies that recognize Neu5Gc only in the context of underlying structures, chicken immunoglobulin Y (IgY) polyclonal antibodies can recognize Neu5Gc in broader contexts. However, prior preparations of such antibodies (including our own) suffered from some non-specificity, as well as some cross-reactivity with the human sialic acid N-acetylneuraminic acid (Neu5Ac). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a novel affinity method utilizing sequential columns of immobilized human and chimpanzee serum sialoglycoproteins, followed by specific elution from the latter column by free Neu5Gc. The resulting mono-specific antibody shows no staining in tissues or cells from mice with a human-like defect in Neu5Gc production. It allows sensitive and specific detection of Neu5Gc in all underlying glycan structural contexts studied, and is applicable to immunohistochemical, enzyme-linked immunosorbent assay (ELISA), Western blot and flow cytometry analyses. Non-immune chicken IgY is used as a reliable negative control. We show that these approaches allow sensitive detection of Neu5Gc in human tissue samples and in some biotherapeutic products, and finally show an example of how Neu5Gc might be eliminated from such products, by using a human cell line grown under defined conditions. CONCLUSIONS: We report a reliable antibody-based method for highly sensitive and specific detection of the non-human sialic acid Neu5Gc in human tissues and biotherapeutic products that has not been previously described.


Subject(s)
Biological Products/analysis , Chemistry, Clinical/methods , Sialic Acids/analysis , Animals , Chickens , Culture Media, Serum-Free , Flow Cytometry/methods , Humans , Immunoglobulins/analysis , Immunohistochemistry/methods , Immunotherapy/methods , Mice , Mutation , Polysaccharides/chemistry , Reproducibility of Results , Sialic Acids/metabolism
5.
Glycobiology ; 17(9): 922-31, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17580316

ABSTRACT

CD33-related-Siglecs are lectins on immune cells that recognize sialic acids via extracellular domains, and deliver negative signals via cytosolic tyrosine-based regulatory motifs. We report that while Siglec-6/OB-BP1 (which can also bind leptin) is expressed on immune cells of both humans and the closely related great apes, placental trophoblast expression is human-specific, with little or no expression in ape placentae. Human-specific transcription factor recognition site changes in the Siglec-6 promoter region can help explain the human-specific expression. Human placenta also expresses natural ligands for Siglec-6 (a mixture of glycoproteins carrying cognate sialylated targets), in areas adjacent to Siglec-6 expression. Ligands were also found in uterine endometrium and on cell lines of trophoblastic or endometrial origin. Thus, Siglec-6 was recruited to placental expression during human evolution, presumably to interact with sialylated ligands for specific negative signaling functions and/or to regulate leptin availability. The control of human labor is poorly understood, but involves multiple cues, including placental signaling. Human birthing is also prolonged in comparison to that in our closest evolutionary relatives, the great apes. We found that Siglec-6 levels are generally low in placentae from elective surgical deliveries without known labor and the highest following completion of labor. We therefore speculate that the negative signaling potential of Siglec-6 was recruited to human-specific placental expression, to slow the tempo of the human birth process. The leptin-binding ability of Siglec-6 is also consistent with this hypothesis, as leptin-deficient mice have increased parturition times.


Subject(s)
Antigens, CD/physiology , Antigens, Differentiation, Myelomonocytic/physiology , Gene Expression Regulation, Developmental , Lectins/physiology , Placenta/metabolism , 5' Untranslated Regions , Animals , Antibodies, Monoclonal/chemistry , Antigens, CD/biosynthesis , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/biosynthesis , Antigens, Differentiation, Myelomonocytic/metabolism , Base Sequence , Cytosol/metabolism , Humans , Lectins/metabolism , Mice , Molecular Sequence Data , N-Acetylneuraminic Acid/metabolism , Pan troglodytes , Sialic Acid Binding Ig-like Lectin 3 , Species Specificity , Transcription, Genetic
6.
Glycobiology ; 16(9): 833-43, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16717104

ABSTRACT

Covalent attachment of polyethylene glycol, PEGylation, has been shown to prolong the half-life and enhance the pharmacodynamics of therapeutic proteins. Current methods for PEGylation, which rely on chemical conjugation through reactive groups on amino acids, often generate isoforms in which PEG is attached at sites that interfere with bioactivity. Here, we present a novel strategy for site-directed PEGylation using glycosyltransferases to attach PEG to O-glycans. The process involves enzymatic GalNAc glycosylation at specific serine and threonine residues in proteins expressed without glycosylation in Escherichia coli, followed by enzymatic transfer of sialic acid conjugated with PEG to the introduced GalNAc residues. The strategy was applied to three therapeutic polypeptides, granulocyte colony stimulating factor (G-CSF), interferon-alpha2b (IFN-alpha2b), and granulocyte/macrophage colony stimulating factor (GM-CSF), which are currently in clinical use.


Subject(s)
Acetylgalactosamine/analogs & derivatives , Cytokines/chemistry , Polyethylene Glycols/chemistry , Acetylgalactosamine/chemistry , Cytokines/biosynthesis , Cytokines/therapeutic use , Escherichia coli , Glycosylation , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use
8.
Mol Cell Biol ; 23(12): 4199-206, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12773563

ABSTRACT

Mouse CD33/Siglec-3 (mCD33) is the apparent ortholog of human CD33/Siglec-3 (hCD33), a member of the Siglec (sialic acid-binding Ig superfamily lectin) family of sialic acid-recognizing cell-surface lectins. We examined the binding specificity and expression pattern of mCD33 and explored its functions by generating mice deficient in this molecule. Like hCD33, mCD33 is expressed on myeloid precursors in the bone marrow, albeit mostly in the more mature stages of the granulocytic lineage. Moreover, unlike hCD33, mCD33 in peripheral blood is primarily expressed on granulocytes. Also, unlike hCD33, mCD33 did not bind to alpha2-3- or alpha2-6-linked sialic acids on lactosamine units. Instead, it showed distinctive sialic acid-dependent binding only to the short O-linked glycans of certain mucins and weak binding to the sialyl-Tn epitope. Binding was enhanced by removal of 9-O-acetyl groups and attenuated by truncation of the glycerol-like side chain of sialic acids. Mice deficient in CD33 were viable and fertile in a controlled-access specific-pathogen-free vivarium, showed no major morphological or histological abnormalities, had no changes in bone marrow or peripheral leukocyte subpopulations, and had very minor differences in biochemical and erythrocyte parameters. Cellular responses to intraperitoneally injected proinflammatory stimulants, as well as subsequent interleukin-6 secretion, were also apparently unaffected. These results indicate substantial species differences in CD33 expression patterns and ligand recognition and suggest functional degeneracy between mCD33 and the other CD33-related Siglec proteins expressed on cells of the myeloid lineage.


Subject(s)
Antigens, CD/biosynthesis , Antigens, Differentiation, Myelomonocytic/biosynthesis , Gene Deletion , Animals , Antigens, CD/metabolism , Antigens, CD/physiology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/physiology , Biotinylation , COS Cells , Caseins/metabolism , Cell Lineage , Enzyme-Linked Immunosorbent Assay , Epitopes , Exons , Granulocytes/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Inflammation , Lipopolysaccharides/metabolism , Mice , Mice, Inbred C57BL , Models, Genetic , N-Acetylneuraminic Acid/metabolism , Protein Binding , Recombinant Fusion Proteins/metabolism , Sialic Acid Binding Ig-like Lectin 3
SELECTION OF CITATIONS
SEARCH DETAIL
...