Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(38): 10565-70, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601659

ABSTRACT

"Protein quake" denotes the dissipation of excess energy across a protein, in response to a local perturbation such as the breaking of a chemical bond or the absorption of a photon. Femtosecond time-resolved small- and wide-angle X-ray scattering (TR-SWAXS) is capable of tracking such ultrafast protein dynamics. However, because the structural interpretation of the experiments is complicated, a molecular picture of protein quakes has remained elusive. In addition, new questions arose from recent TR-SWAXS data that were interpreted as underdamped oscillations of an entire protein, thus challenging the long-standing concept of overdamped global protein dynamics. Based on molecular-dynamics simulations, we present a detailed molecular movie of the protein quake after carbon monoxide (CO) photodissociation in myoglobin. The simulations suggest that the protein quake is characterized by a single pressure peak that propagates anisotropically within 500 fs across the protein and further into the solvent. By computing TR-SWAXS patterns from the simulations, we could interpret features in the reciprocal-space SWAXS signals as specific real-space dynamics, such as CO displacement and pressure wave propagation. Remarkably, we found that the small-angle data primarily detect modulations of the solvent density but not oscillations of the bare protein, thereby reconciling recent TR-SWAXS experiments with the notion of overdamped global protein dynamics.


Subject(s)
Anisotropy , Carbon Monoxide/chemistry , Myoglobin/chemistry , Thermodynamics , Animals , Horses , Models, Theoretical , Molecular Dynamics Simulation , Myoglobin/metabolism , Protein Conformation , Scattering, Small Angle , Solvents/chemistry
3.
J Chem Phys ; 143(10): 104108, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26374019

ABSTRACT

Time-resolved wide-angle X-ray scattering (TR-WAXS) is an emerging experimental technique used to track chemical reactions and conformational transitions of proteins in real time. Thanks to increased time resolution of the method, anisotropic TR-WAXS patterns were recently reported, which contain more structural information than isotropic patterns. So far, however, no method has been available to compute anisotropic WAXS patterns of biomolecules, thus limiting the structural interpretation. Here, we present a method to compute anisotropic TR-WAXS patterns from molecular dynamics simulations. The calculations accurately account for scattering of the hydration layer and for thermal fluctuations. For many photo-excitable proteins, given a low intensity of the excitation laser, the anisotropic pattern is described by two independent components: (i) an isotropic component, corresponding to common isotropic WAXS experiments and (ii) an anisotropic component depending on the orientation of the excitation dipole of the solute. We present a set of relations for the calculation of these two components from experimental scattering patterns. Notably, the isotropic component is not obtained by a uniform azimuthal average on the detector. The calculations are illustrated and validated by computing anisotropic WAXS patterns of a spheroidal protein model and of photoactive yellow protein. Effects due to saturated excitation at high intensities of the excitation laser are discussed, including opportunities to extract additional structural information by modulating the laser intensity.


Subject(s)
Molecular Dynamics Simulation , X-Ray Diffraction/methods , Anisotropy , Bacterial Proteins/chemistry , Diffusion , Lasers , Photoreceptors, Microbial/chemistry , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...