Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1228509, 2023.
Article in English | MEDLINE | ID: mdl-37600798

ABSTRACT

Introduction: Neurological diseases can stem from environmental influences such as antecedent viral infections or exposure to potential toxicants, some of which can trigger immune responses leading to neurological symptoms. Theiler's murine encephalomyelitis virus (TMEV) is used to model human neurological conditions associated with prior viral infections, with outcomes partly attributable to improper induction and regulation of the immune response. Perfluorooctanoic acid (PFOA) can alter pathologies known to influence neurological disease such as inflammatory responses, cytokine expression, and glial activation. Co-exposure to TMEV and PFOA was used to test the hypothesis that early life exposure to the potential immunotoxicant PFOA would affect immune responses so as to render TMEV-resistant C57BL/6J (B6) mice susceptible to viral-induced neurological disease. Methods: Neonate B6 mice were exposed to different treatments: non-injected, sham-infected with PBS, and TMEV-infected, with the drinking water of each group including either 70 ppt PFOA or filtered water. The effects of PFOA were evaluated by comparing neurological symptoms and changes in immune-related cytokine and chemokine production induced by viral infection. Immune responses of 23 cytokines and chemokines were measured before and after infection to determine the effects of PFOA exposure on immune response. Results: Prior to infection, an imbalance between Th1, Th2, and Treg cytokines was observed in PFOA-exposed mice, suppressing IL-4 and IL-13 production. However, the balance was restored and characterized by an increase in pro-inflammatory cytokines in the non-infected group, and a decrease in IL-10 in the PFOA + TMEV group. Furthermore, the PFOA + TMEV group experienced an increase in seizure frequency and severity. Discussion: Overall, these findings provide insight into the complex roles of immune responses in the pathogenesis of virus-associated neurological diseases influenced by co-exposures to viruses and immunotoxic compounds.


Subject(s)
Theilovirus , Humans , Animals , Mice , Mice, Inbred C57BL , Seizures , Cytokines
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142395

ABSTRACT

A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.


Subject(s)
Theilovirus , Animals , Genetic Background , Mice , Neuroinflammatory Diseases , RNA , RNA, Messenger , Theilovirus/genetics
3.
PLoS One ; 16(8): e0256370, 2021.
Article in English | MEDLINE | ID: mdl-34415947

ABSTRACT

Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.


Subject(s)
Theilovirus , Animals , Demyelinating Diseases , Enterovirus Infections , Lymphocyte Activation , Mice , Persistent Infection
4.
Sci Rep ; 7(1): 12194, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939838

ABSTRACT

Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.


Subject(s)
Demyelinating Diseases/genetics , Disease Models, Animal , Genetic Background , Mice, Inbred Strains/genetics , Theilovirus/pathogenicity , Animals , Behavior, Animal , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Female , Humans , Male , Mice , Phenotype , Virus Diseases
5.
BMC Med Genomics ; 10(1): 21, 2017 04 08.
Article in English | MEDLINE | ID: mdl-28390424

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. METHODS: To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47-93 months) GRMD dogs, were assessed. RESULTS: GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a "metabolic crisis" seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. CONCLUSIONS: These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle.


Subject(s)
Dog Diseases/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism , Animals , Dog Diseases/metabolism , Dogs , Gene Expression Profiling , Glycolysis , Muscular Dystrophy, Duchenne/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Organ Specificity , Phenotype
6.
Front Aging Neurosci ; 8: 183, 2016.
Article in English | MEDLINE | ID: mdl-27536236

ABSTRACT

Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases.

7.
Pediatr Res ; 79(4): 629-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26672735

ABSTRACT

BACKGROUND: In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. METHODS: We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. RESULTS: We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. CONCLUSION: These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.


Subject(s)
Biomarkers/metabolism , Heart/physiopathology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Oligonucleotide Array Sequence Analysis , Animals , Case-Control Studies , Cohort Studies , Dogs , Humans , Muscular Dystrophy, Duchenne/genetics
8.
PLoS Genet ; 11(1): e1004942, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25617623

ABSTRACT

Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions.


Subject(s)
Gene Expression Regulation , Genetics, Population , Genotype , Quantitative Trait Loci/genetics , Chromosome Mapping , Gene Expression Profiling , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Twins/genetics
9.
ILAR J ; 55(1): 119-49, 2014.
Article in English | MEDLINE | ID: mdl-24936034

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.


Subject(s)
Disease Models, Animal , Drug Delivery Systems/methods , Drug Discovery/methods , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Pharmacogenetics/methods , Animals , Dogs , Drug Discovery/legislation & jurisprudence , Drug Evaluation, Preclinical/methods , Humans , Mice , Mice, Inbred mdx , Species Specificity , Translational Research, Biomedical/methods
10.
Eur J Hum Genet ; 22(9): 1093-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24398800

ABSTRACT

Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions.


Subject(s)
DNA Copy Number Variations , Genes, Mitochondrial , RNA, Messenger/genetics , Black People/genetics , Cell Line, Tumor , Genome , Humans , White People/genetics
11.
Genetics ; 196(2): 413-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24298061

ABSTRACT

The expression of a gene can vary across individuals in the general population, as well as between monozygotic twins. This variable expression is assumed to be due to the influence of both genetic and nongenetic factors. Yet little evidence supporting this assumption has been obtained from empirical data. In this study, we used expression data from a large twin cohort to investigate the influences of genetic and nongenetic factors on variable gene expression. We focused on a set of expression variability QTL (evQTL)--i.e., genetic loci associated with the variance, as opposed to the mean, of gene expression. We identified evQTL for 99, 56, and 79 genes in lymphoblastoid cell lines, skin, and fat, respectively. The differences in gene expression, measured by the relative mean difference (RMD), tended to be larger between pairs of dizygotic (DZ) twins than between pairs of monozygotic (MZ) twins, showing that genetic background influenced the expression variability. Furthermore, a more profound RMD was observed between pairs of MZ twins whose genotypes were associated with greater expression variability than the RMD found between pairs of MZ twins whose genotypes were associated with smaller expression variability. This suggests that nongenetic (e.g., environmental) factors contribute to the variable expression. Lastly, we demonstrated that the formation of evQTL is likely due to partial linkages between eQTL SNPs that are additively associated with the mean of gene expression; in most cases, no epistatic effect is involved. Our findings have implications for understanding divergent sources of gene expression variability.


Subject(s)
Environment , Epistasis, Genetic , Gene Expression Regulation , Quantitative Trait Loci , Twins/genetics , Cohort Studies , Female , Gene Expression Profiling , Gene-Environment Interaction , Genetic Linkage , Genotype , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Polymorphism, Single Nucleotide , Registries , United Kingdom
12.
BMC Genomics ; 10: 182, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19393056

ABSTRACT

BACKGROUND: The cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence. RESULTS: Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC. CONCLUSION: These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.


Subject(s)
Cattle/genetics , Chromosomes, Mammalian/genetics , Major Histocompatibility Complex/genetics , Radiation Hybrid Mapping/methods , Animals , Databases, Nucleic Acid , Genetic Markers/genetics , Genome, Human , Genomics/methods , Humans , Reproducibility of Results , Sequence Tagged Sites , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...