Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Devices ; 1(2): 853-860, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38130883

ABSTRACT

Lung biopsies are often used to aid in the diagnosis of cancers. However, the procedure carries the dual risk of air (pneumothorax) or blood (hemothorax) filling the pleural cavity, increasing the risk of a collapsed lung and chest intubation. This work demonstrates the effectiveness of a polyurethane-based shape memory polymer foam as a biopsy tract sealant. The impact of diameter, length, pore size, and shape memory effect was evaluated to determine the ideal device design for tract sealing. Characterization in an in vitro benchtop lung model identified that diameter had the largest influence on sealing efficacy, while the length of the device had little to no impact. Finally, evaluation of deployment force demonstrated that devices fabricated from the shape memory polymer foams were easier to deploy than elastic foams. Following characterization, down-selected device designs were combined with radiopaque markers for use in image-guided based procedures. Furthermore, the introduction of the markers or sterilization did not impact the ability of the devices to seal the biopsy tract and led to a decrease in the deployment force. Overall, these results demonstrate the potential for polyurethane-based shape memory foam devices to serve as biopsy tract sealant devices that aim to reduce complications, such as pneumothorax, from occurring.

2.
ACS Biomater Sci Eng ; 9(2): 642-650, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36729490

ABSTRACT

Lung tissue biopsies can result in a leakage of blood (hemothorax) and air (pneumothorax) from the biopsy tract, which threatens the patient with a collapsed lung and other complications. We have developed a lung biopsy tract sealant based on a thiol-ene-crosslinked PEG hydrogel and polyurethane shape memory polymer (SMP) foam composite. After insertion into biopsy tracts, the PEG hydrogel component contributes to sealing through water-driven swelling, whereas the SMP foam contributes to sealing via thermal actuation. The gelation kinetics, swelling properties, and rheological properties of various hydrogel formulations were studied to determine the optimal formulation for composite fabrication. Composites were then fabricated via vacuum infiltration of the PEG hydrogel precursors into the SMP foam followed by thermal curing. After drying, the composites were crimped to enable insertion into biopsy tracts. Characterization revealed that the composites exhibited a slight delay in shape recovery compared to control SMP foams. However, the composites were still able to recover their shape in a matter of minutes. Cytocompatibility testing showed that leachable byproducts can be easily removed by washing and washed composites were not cytotoxic to mouse lung fibroblasts (L929s). Benchtop testing demonstrated that the composites can be easily deployed through a cannula, and the working time for deployment after exposure to water was 2 min. Furthermore, testing in an in vitro lung model demonstrated that the composites were able to effectively seal a lung biopsy tract and prevent air leakage. Collectively, these results show that the PEG hydrogel/SMP foam composites have the potential to be used as lung biopsy tract sealants to prevent pneumothorax post-lung biopsy.


Subject(s)
Pneumothorax , Smart Materials , Animals , Mice , Hydrogels , Biocompatible Materials , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...