Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 5(1): 18, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-36697858

ABSTRACT

The production of MOFs at large scale in a sustainable way is key if these materials are to be exploited for their promised widespread application. Much of the published literature has focused on demonstrations of preparation routes using difficult or expensive methodologies to scale. One such MOF is nano-zeolitic imidazolate framework-8 (ZIF-8) - a material of interest for a range of possible applications. Work presented here shows how the synthesis of ZIF-8 can be tracked by a range of methods including X-ray diffraction, thermo gravimetric analysis and inelastic neutron scattering - which offer the prospect of in-line monitoring of the synthesis reaction. Herein we disclose how the production of nano-ZIF-8 can be conducted at scale using the intermediate phase ZIF-L. By understanding the economics and demonstrating the production of 1 kg of nano-ZIF-8 at pilot scale we have shown how this once difficult to make material can be produced to specification in a scalable and cost-efficient fashion.

2.
Phys Chem Chem Phys ; 22(42): 24784-24795, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33107513

ABSTRACT

Strain in Pt nanoalloys induced by the secondary metal has long been suggested as a major contributor to the modification of catalytic properties. Here, we investigate strain in PtCo nanoparticles using a combination of computational modelling and microscopy experiments. We have used a combination of molecular dynamics (MD) and large-scale density functional theory (DFT) for our models, alongside experimental work using annular dark field scanning transmission electron microscopy (ADF-STEM). We have performed extensive validation of the interatomic potential against DFT using a Pt568Co18 nanoparticle. Modelling gives access to 3 dimensional structures that can be compared to the 2D ADF-STEM images, which we use to build an understanding of nanoparticle structure and composition. Strain has been measured for PtCo and pure Pt nanoparticles, with MD annealed models compared to ADF-STEM images. Our analysis was performed on a layer by layer basis, where distinct trends between the Pt and PtCo alloy nanoparticles are observed. To our knowledge, we show for the first time a way in which detailed atomistic simulations can be used to augment and help interpret the results of ADF-STEM strain mapping experiments, which will enhance their use in characterisation towards the development of improved catalysts.

3.
J Chem Phys ; 151(11): 114702, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31542047

ABSTRACT

Metal oxide supports often play an active part in heterogeneous catalysis by moderating both the structure and the electronic properties of the metallic catalyst particle. In order to provide some fundamental understanding on these effects, we present here a density functional theory (DFT) investigation of the binding of O and CO on Pt nanoparticles supported on titania (anatase) surfaces. These systems are complex, and in order to develop realistic models, here, we needed to perform DFT calculations with up to ∼1000 atoms. By performing full geometry relaxations at each stage, we avoid any effects of "frozen geometry" approximations. In terms of the interaction of the Pt nanoparticles with the support, we find that the surface deformation of the anatase support contributes greatly to the adsorption of each nanoparticle, especially for the anatase (001) facet. We attempt to separate geometric and electronic effects and find a larger contribution to ligand binding energy arising from the former. Overall, we show an average weakening (compared to the isolated nanoparticle) of ∼0.1 eV across atop, bridge and hollow binding sites on supported Pt55 for O and CO, and a preservation of site preference. Stronger effects are seen for O on Pt13, which is heavily deformed by anatase supports. In order to rationalize our results and examine methods for faster characterization of metal catalysts, we make use of electronic descriptors, including the d-band center and an electronic density based descriptor. We expect that the approach followed in this study could be applied to study other supported metal catalysts.

5.
J Phys Condens Matter ; 24(39): 395004, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22914286

ABSTRACT

In this paper a new interatomic potential based on the Kieffer force field and designed to perform molecular dynamics (MD) simulations of carbon deposition on silicon surfaces is implemented. This potential is a third-order reactive force field that includes a dynamic charge transfer and allows for the formation and breaking of bonds. The parameters for Si-C and C-C interactions are optimized using a genetic algorithm. The quality of the potential is tested on its ability to model silicon carbide and diamond physical properties as well as the formation energies of point defects. Furthermore, MD simulations of carbon deposition on reconstructed (100) silicon surfaces are carried out and compared to similar simulations using a Tersoff-like bond order potential. Simulations with both potentials produce similar results showing the ability to extend the use of the Kieffer potential to deposition studies. The investigation reveals the presence of a channelling effect when depositing the carbon at 45° incidence angle. This effect is due to channels running in directions symmetrically equivalent to the (110) direction. The channelling is observed to a lesser extent for carbon atoms with 30° and 60° incidence angles relative to the surface normal. On a pristine silicon surface, sticking coefficients were found to vary between 100 and 73%, depending on deposition conditions.

6.
J Mol Graph Model ; 26(1): 104-16, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17161967

ABSTRACT

The [3]rotaxane synthesised as a single isomer constituted of two cyclodextrins (CDs) and an azobenzene chain [M.R. Craig, T.D.W. Claridge, M.G. Hutchings, H.L. Anderson, Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer, Chem. Commun. 16 (1999) 1537-1538] has been investigated using molecular mechanics (MM) and dynamics (MD) with the MM3 force field in order to evaluate the stability of various configurations of the complex in the isolated and solvated states. The influence of the blocking groups and the presence of energy barriers along the azo chain were first investigated through the calculation of an energy profile. It revealed that the CD could translate along the chain at room temperature without any decomplexation. Next, MD simulations of three different types of configurations, i.e., head-to-head, head-to-tail, and tail-to-tail, of the [3]rotaxane were carried out. The non-solvated phase simulations showed structures with the CDs close to each other while the solvated ones showed structures with CDs separated by larger distances. This separation occurs due to the solute-solvent interactions. When the systems are in isolated state, the observed structure of the complexes are less stable due to an unfavourable arrangement of the hydroxyls groups of the adjacent CD faces. When considering solvation, energies of the three configurations are roughly identical due to the large distance between the faces of the CDs.


Subject(s)
Azo Compounds/chemistry , Rotaxanes/chemistry , alpha-Cyclodextrins/chemistry , Computer Simulation , Hydrogen Bonding , Macromolecular Substances , Models, Molecular , Molecular Conformation , Molecular Structure , Rotaxanes/chemical synthesis , Solvents , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...