Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Arthroplasty ; 37(8): 1602-1605.e3, 2022 08.
Article in English | MEDLINE | ID: mdl-35314287

ABSTRACT

BACKGROUND: This single-surgeon retrospective study examined a consecutive series of direct anterior approach total hip arthroplasties (THAs). Differences for the accuracy of acetabular component placement, leg length discrepancy, femoral offset, and absolute global offset difference were measured for patients who underwent hip replacement surgery with either fluoroscopic or robotic guidance. METHODS: One hundred THAs were included in both the fluoroscopically guided and robotically guided groups in the study. The program TraumaCad was used to analyze the preoperative and 6-week postoperative standing anteroposterior pelvic radiographs used in this study to evaluate the accuracy of component positioning. RESULTS: Robotic-guided surgery demonstrated a small improvement in acetabular inclination error, 3.8° average robotic error vs 4.63° average fluoroscopic error (P < .01). There was no statistically significant difference in accuracy for acetabular anteversion, leg length discrepancy, femoral offset, or global offset difference between the 2 groups. There was also no significant difference in the placement of acetabular components into the Lewinnek safe zone or Callanan safe zone. Both fluoroscopically guided and robotically guided THA patients had similar patterns of error, with excessive anteversion and inclination being more common than inadequate anteversion or inclination. CONCLUSION: The findings from our study question the use of haptic robotic guidance during direct anterior approach THA when compared to fluoroscopic guidance.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Robotic Surgical Procedures , Acetabulum/diagnostic imaging , Acetabulum/surgery , Fluoroscopy , Hip Joint/diagnostic imaging , Hip Joint/surgery , Humans , Leg Length Inequality/surgery , Retrospective Studies
2.
Front Genet ; 4: 166, 2013.
Article in English | MEDLINE | ID: mdl-24009623

ABSTRACT

The mammalian target of rapamycin (mTOR) inhibitors, a set of promising potential anti-cancer agents, has shown response variability among individuals. This study aimed to identify novel biomarkers and mechanisms that might influence the response to Rapamycin and Everolimus. Genome-wide association (GWA) analyses involving single nucleotide polymorphisms (SNPs), mRNA, and microRNAs microarray data were assessed for association with area under the cytotoxicity dose response curve (AUC) of two mTOR inhibitors in 272 human lymphoblastoid cell lines (LCLs). Integrated analysis among SNPs, expression data, microRNA data and AUC values were also performed to help select candidate genes for further functional characterization. Functional validation of candidate genes using siRNA screening in multiple cell lines followed by MTS assays for the two mTOR inhibitors were performed. We found that 16 expression probe sets (genes) that overlapped between the two drugs were associated with AUC values of two mTOR inhibitors. One hundred and twenty seven and one hundred SNPs had P < 10(-4), while 8 and 10 SNPs had P < 10(-5) with Rapamycin and Everolimus AUC, respectively. Functional studies indicated that 13 genes significantly altered cell sensitivity to either one or both drugs in at least one cell line. Additionally, one microRNA, miR-10a, was significantly associated with AUC values for both drugs and was shown to repress expression of genes that were associated with AUC and desensitize cells to both drugs. In summary, this study identified genes and a microRNA that might contribute to response to mTOR inhibitors.

3.
Stat Appl Genet Mol Biol ; 12(4): 505-16, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23934611

ABSTRACT

Pathway topology and relationships between genes have the potential to provide information for modeling effects of mRNA gene expression on complex traits. For example, researchers may wish to incorporate the prior belief that "hub" genes (genes with many neighbors) are more likely to influence the trait. In this paper, we propose and compare six Bayesian pathway-based prior models to incorporate pathway topology information into association analyses. Including prior information regarding the relationships among genes in a pathway was effective in somewhat improving detection rates for genes associated with complex traits. Through an extensive set of simulations, we found that when hub (central) effects are expected, the diagonal degree model is preferred; when spoke (edge) effects are expected, the spatial power model is preferred. When there is no prior knowledge about the location of the effect genes in the pathway (e.g., hub versus spoke model), it is worthwhile to apply multiple models, as the model with the best DIC is not always the one with the best detection rate. We also applied the models to pharmacogenomic studies for the drugs gemcitabine and 6-mercaptopurine and found that the diagonal degree model identified an association between 6-mercaptopurine response and expression of the gene SLC28A3, which was not detectable using the model including no pathway information. These results demonstrate the value of incorporating pathway information into association analyses.


Subject(s)
Gene Expression , Models, Genetic , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Algorithms , Antimetabolites, Antineoplastic/pharmacology , Bayes Theorem , Cell Line, Tumor , Computer Simulation , Data Interpretation, Statistical , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Gene Expression/drug effects , Gene Regulatory Networks , Genetic Association Studies , Genomics , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mercaptopurine/pharmacology , Phenotype , Gemcitabine
4.
PLoS One ; 8(8): e70216, 2013.
Article in English | MEDLINE | ID: mdl-23936393

ABSTRACT

PURPOSE: FKBP51, (FKBP5), is a negative regulator of Akt. Variability in FKBP5 expression level is a major factor contributing to variation in response to chemotherapeutic agents including gemcitabine, a first line treatment for pancreatic cancer. Genetic variation in FKBP5 could influence its function and, ultimately, treatment response of pancreatic cancer. EXPERIMENTAL DESIGN: We set out to comprehensively study the role of genetic variation in FKBP5 identified by Next Generation DNA resequencing on response to gemcitabine treatment of pancreatic cancer by utilizing both tumor and germline DNA samples from 43 pancreatic cancer patients, including 19 paired normal-tumor samples. Next, genotype-phenotype association studies were performed with overall survival as well as with FKBP5 gene expression in tumor using the same samples in which resequencing had been performed, followed by functional genomics studies. RESULTS: In-depth resequencing identified 404 FKBP5 single nucleotide polymorphisms (SNPs) in normal and tumor DNA. SNPs with the strongest associations with survival or FKBP5 expression were subjected to functional genomic study. Electromobility shift assay showed that the rs73748206 "A(T)" SNP altered DNA-protein binding patterns, consistent with significantly increased reporter gene activity, possibly through its increased binding to Glucocorticoid Receptor (GR). The effect of rs73748206 was confirmed on the basis of its association with FKBP5 expression by affecting the binding to GR in lymphoblastoid cell lines derived from the same patients for whom DNA was used for resequencing. CONCLUSION: This comprehensive FKBP5 resequencing study provides insights into the role of genetic variation in variation of gemcitabine response.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Polymorphism, Single Nucleotide , Tacrolimus Binding Proteins/genetics , Deoxycytidine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genotype , HEK293 Cells , Humans , Pharmacogenetics , Phenotype , Receptors, Glucocorticoid/metabolism , Sequence Analysis, DNA , Survival Analysis , Tacrolimus Binding Proteins/metabolism , Gemcitabine
5.
Pharmacogenet Genomics ; 23(3): 156-66, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23324805

ABSTRACT

OBJECTIVES: FKBP51 (51 kDa immunophilin) acts as a modulator of the glucocorticoid receptor and a negative regulator of the Akt pathway. Genetic variation in FKBP5 plays a role in antidepressant response. The aim of this study was to comprehensively assess the role of genetic variation in FKBP5, identified by both Sanger and Next Generation DNA resequencing, as well as genome-wide single nucleotide polymorphisms (SNPs) associated with FKBP5 expression in the response to the selective serotonin reuptake inhibitor (SSRI) treatment of major depressive disorder. METHODS: We identified 657 SNPs in FKBP5 by Next Generation sequencing of 96 DNA samples from white patients, and 149 SNPs were selected for the genotyping together with 235 SNPs that were trans-associated with variation in FKBP5 expression in lymphoblastoid cells. A total of 529 DNA samples from the Mayo Clinic PGRN-SSRI Pharmacogenomic trial for which genome-wide SNPs had already been obtained were genotyped for these 384 SNPs, and associations with treatment outcomes were determined. The most significant SNPs were genotyped using 96 DNA samples from white non-Hispanic patients of the NIMH-supported Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study to attempt replication, followed by functional genomic studies. RESULTS: Genotype-phenotype association analysis indicated that rs352428 was associated with both 8-week treatment response in the Mayo study (odds ratio=0.49; P=0.003) and 6-week response in the STAR*D replication study (odds ratio=0.74; P=0.05). The electrophoresis mobility shift assay and the reporter gene assay confirmed the possible role of this SNP in transcription regulation. CONCLUSION: This comprehensive FKBP5 sequence study provides insight into the role of common genetic polymorphisms that might influence SSRI treatment outcomes in major depressive disorder patients.


Subject(s)
Depressive Disorder, Major/drug therapy , Genetic Variation , Selective Serotonin Reuptake Inhibitors/therapeutic use , Tacrolimus Binding Proteins/genetics , Cells, Cultured , Electrophoretic Mobility Shift Assay , Humans , Mutagenesis, Site-Directed , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Treatment Outcome
6.
Hum Biol ; 84(4): 343-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23249312

ABSTRACT

Identifying ancestry along each chromosome in admixed individuals provides a wealth of information for understanding the population genetic history of admixture events and is valuable for admixture mapping and identifying recent targets of selection. We present PCAdmix (available at https://sites.google.com/site/pcadmix/home ), a Principal Components-based algorithm for determining ancestry along each chromosome from a high-density, genome-wide set of phased single-nucleotide polymorphism (SNP) genotypes of admixed individuals. We compare our method to HAPMIX on simulated data from two ancestral populations, and we find high concordance between the methods. Our method also has better accuracy than LAMP when applied to three-population admixture, a situation as yet unaddressed by HAPMIX. Finally, we apply our method to a data set of four Latino populations with European, African, and Native American ancestry. We find evidence of assortative mating in each of the four populations, and we identify regions of shared ancestry that may be recent targets of selection and could serve as candidate regions for admixture-based association mapping.


Subject(s)
Chromosomes, Human , Genotype , Models, Genetic , Polymorphism, Single Nucleotide , Population Dynamics , Principal Component Analysis/methods , Racial Groups/genetics , Algorithms , Computer Simulation , Genomics , Humans , Phylogeography , United States
7.
Am J Hum Genet ; 91(4): 660-71, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23040495

ABSTRACT

Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago.


Subject(s)
Genome, Human , Haplotypes/genetics , Population/genetics , Racial Groups/genetics , Genetics, Population/methods , Heterozygote , Humans , Polymorphism, Single Nucleotide
8.
Front Genet ; 3: 173, 2012.
Article in English | MEDLINE | ID: mdl-22973297

ABSTRACT

Aggregating information across multiple variants in a gene or region can improve power for rare variant association testing. Power is maximized when the aggregation region contains many causal variants and few neutral variants. In this paper, we present a method for the localization of the association signal in a region using a sliding-window based approach to rare variant association testing in a region. We first introduce a novel method for analysis of rare variants, the Difference in Minor Allele Frequency test (DMAF), which allows combined analysis of common and rare variants, and makes no assumptions about the direction of effects. In whole-region analyses of simulated data with risk and protective variants, DMAF and other methods which pool data across individuals were found to outperform methods which pool data across variants. We then implement a sliding-window version of DMAF, using a step-down permutation approach to control type I error with the testing of multiple windows. In simulations, the sliding-window DMAF improved power to detect a causal sub-region, compared to applying DMAF to the whole region. Sliding-window DMAF was also effective in localizing the causal sub-region. We also applied the DMAF sliding-window approach to test for an association between response to the drug gemcitabine and variants in the gene FKBP5 sequenced in 91 lymphoblastoid cell lines derived from white non-Hispanic individuals. The application of the sliding-window test procedure detected an association in a sub-region spanning an exon and two introns, when rare and common variants were analyzed together.

9.
BMC Cancer ; 12: 422, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23006423

ABSTRACT

BACKGROUND: Taxane is one of the first line treatments of lung cancer. In order to identify novel single nucleotide polymorphisms (SNPs) that might contribute to taxane response, we performed a genome-wide association study (GWAS) for two taxanes, paclitaxel and docetaxel, using 276 lymphoblastoid cell lines (LCLs), followed by genotyping of top candidate SNPs in 874 lung cancer patient samples treated with paclitaxel. METHODS: GWAS was performed using 1.3 million SNPs and taxane cytotoxicity IC50 values for 276 LCLs. The association of selected SNPs with overall survival in 76 small or 798 non-small cell lung cancer (SCLC, NSCLC) patients were analyzed by Cox regression model, followed by integrated SNP-microRNA-expression association analysis in LCLs and siRNA screening of candidate genes in SCLC (H196) and NSCLC (A549) cell lines. RESULTS: 147 and 180 SNPs were associated with paclitaxel or docetaxel IC50s with p-values <10-4 in the LCLs, respectively. Genotyping of 153 candidate SNPs in 874 lung cancer patient samples identified 8 SNPs (p-value < 0.05) associated with either SCLC or NSCLC patient overall survival. Knockdown of PIP4K2A, CCT5, CMBL, EXO1, KMO and OPN3, genes within 200 kb up-/downstream of the 3 SNPs that were associated with SCLC overall survival (rs1778335, rs2662411 and rs7519667), significantly desensitized H196 to paclitaxel. SNPs rs2662411 and rs1778335 were associated with mRNA expression of CMBL or PIP4K2A through microRNA (miRNA) hsa-miR-584 or hsa-miR-1468. CONCLUSIONS: GWAS in an LCL model system, joined with clinical translational and functional studies, might help us identify genetic variations associated with overall survival of lung cancer patients treated paclitaxel.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged-Ring Compounds/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Small Cell Lung Carcinoma/genetics , Taxoids/therapeutic use , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Female , Genome-Wide Association Study , Genotype , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , Middle Aged , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/mortality , Survival Analysis
10.
PLoS Genet ; 8(1): e1002397, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22253600

ABSTRACT

North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from "back-to-Africa" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.


Subject(s)
Black People/genetics , Gene Flow/genetics , Genetic Variation , Population Dynamics , Population , Africa South of the Sahara/ethnology , Africa, Northern , Black People/history , DNA, Mitochondrial/genetics , Egypt, Ancient , Emigration and Immigration , Europe , Gene Pool , Genomics , Genotype , Haplotypes , History, Ancient , Humans , Middle East , Morocco , Polymorphism, Single Nucleotide , White People/genetics , White People/history
11.
BMC Med Genet ; 12: 156, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22142333

ABSTRACT

BACKGROUND: Human chromosomal region 8q24 contains several genes which could be functionally related to cancer, including the proto-oncogene c-MYC. However, the abundance of associations around 128 Mb on chromosome 8 could mask the appearance of a weaker, but important, association elsewhere on 8q24. METHODS: In this study, we completed a meta-analysis of results from nine genome-wide association studies for seven types of solid-tumor cancers (breast, prostate, pancreatic, lung, ovarian, colon, and glioma) to identify additional associations that were not apparent in any individual study. RESULTS: Fifteen SNPs in the 8q24 region had meta-analysis p-values < 1E-04. In particular, the region consisting of 120,576,000-120,627,000 bp contained 7 SNPs with p-values < 1.0E-4, including rs6993464 (p = 1.25E-07). This association lies in the region between two genes, NOV and ENPP2, which have been shown to play a role in tumor development and motility. An additional region consisting of 5 markers from 128,478,000 bp - 128,524,000 (around gene POU5F1B) had p-values < 1E-04, including rs6983267, which had the smallest p-value (p = 6.34E-08). This result replicates previous reports of association between rs6983267 and prostate and colon cancer. CONCLUSIONS: Further research in this area is warranted as these results demonstrate that the chromosomal region 8q24 may contain a locus that influences general cancer susceptibility between 120,576 and 120,630 kb.


Subject(s)
Chromosomes, Human, Pair 8 , Genome-Wide Association Study , Neoplasms/genetics , Disease Progression , Genetic Loci , Humans , Nephroblastoma Overexpressed Protein/genetics , Phosphoric Diester Hydrolases/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Mas
12.
Genet Epidemiol ; 35(5): 371-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21520271

ABSTRACT

Multi-symptom diseases without a consistent continuous measurement of severity may be best understood with a categorical interpretation. In this paper, we present LOCate v.2, a fast, exact algorithm for linkage analysis of all types of categorical traits, both ordinal and nominal. Our method is able to incorporate missing data and analyze complex genealogical structure, including inbreeding loops. LOCate v.2 computes exact likelihoods efficiently through an elimination algorithm, similar to that used by Superlink for binary traits. We compare LOCate v.2 to LOT and QTLlink, two existing methods of linkage analysis for ordinal traits. We find that LOCate v.2 outperforms both methods when used to analyze simulated nominal traits. In addition, LOCate v.2 performs as well as QTLlink on simulated ordinal traits, and better than LOT due to the necessity of cutting large pedigrees for analysis in LOT. To demonstrate the versatility of LOCate v.2, we conduct an ordinal and nominal linkage analysis of ventricular arrhythmias in a large, inbred pedigree of German Shepherd dogs. We find that a trichotomous ordinal or nominal interpretation strengthens the evidence in favor of linkage to a region on chromosome 6, and provides new evidence of linkage to a region on chromosome 11. LOCate v.2 is a unified, fast, and robust method for linkage analysis of ordinal and nominal traits which will be valuable to researchers interested in investigating any type of categorical trait.


Subject(s)
Genetic Linkage , Pedigree , Algorithms , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/veterinary , Computer Simulation , Dog Diseases/genetics , Dogs , Female , Inbreeding , Male , Models, Genetic , Models, Statistical , Penetrance , Quantitative Trait Loci
13.
Proc Natl Acad Sci U S A ; 108(13): 5154-62, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21383195

ABSTRACT

Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by F(ST), in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world.


Subject(s)
Biological Evolution , Black People/genetics , Genetic Variation , Genetics, Population , Polymorphism, Single Nucleotide , Africa , Culture , Ethnicity/genetics , Genome, Human , Humans , Linkage Disequilibrium
14.
PLoS One ; 5(8): e12307, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20865038

ABSTRACT

BACKGROUND: Pedigree studies of complex heritable diseases often feature nominal or ordinal phenotypic measurements and missing genetic marker or phenotype data. METHODOLOGY: We have developed a Bayesian method for Linkage analysis of Ordinal and Categorical traits (LOCate) that can analyze complex genealogical structure for family groups and incorporate missing data. LOCate uses a Gibbs sampling approach to assess linkage, incorporating a simulated tempering algorithm for fast mixing. While our treatment is Bayesian, we develop a LOD (log of odds) score estimator for assessing linkage from Gibbs sampling that is highly accurate for simulated data. LOCate is applicable to linkage analysis for ordinal or nominal traits, a versatility which we demonstrate by analyzing simulated data with a nominal trait, on which LOCate outperforms LOT, an existing method which is designed for ordinal traits. We additionally demonstrate our method's versatility by analyzing a candidate locus (D2S1788) for panic disorder in humans, in a dataset with a large amount of missing data, which LOT was unable to handle. CONCLUSION: LOCate's accuracy and applicability to both ordinal and nominal traits will prove useful to researchers interested in mapping loci for categorical traits.


Subject(s)
Genetic Linkage , Quantitative Trait, Heritable , Algorithms , Bayes Theorem , Humans , Models, Genetic , Pedigree , Software
15.
PLoS Biol ; 8(8): e1000451, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20711490

ABSTRACT

Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.


Subject(s)
Animals, Domestic/anatomy & histology , Animals, Domestic/genetics , Dogs/anatomy & histology , Genetic Variation , Animals , Body Size , Genome , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
16.
PLoS Genet ; 6(4): e1000909, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20419149

ABSTRACT

Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.


Subject(s)
Epilepsy/veterinary , Genome , Horse Diseases/genetics , Horses/genetics , Myosins/genetics , Polymorphism, Single Nucleotide , Animals , Base Sequence , Epilepsy/genetics , Genotype , Molecular Sequence Data , Syndrome
17.
Nature ; 464(7290): 898-902, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20237475

ABSTRACT

Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.


Subject(s)
Animals, Domestic/genetics , Dogs/genetics , Genome/genetics , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Animals, Domestic/classification , Animals, Wild/classification , Animals, Wild/genetics , Breeding , Computational Biology , Dogs/classification , Evolution, Molecular , Asia, Eastern/ethnology , Middle East/ethnology , Phenotype , Phylogeny , Wolves/classification , Wolves/genetics
18.
Gene ; 450(1-2): 70-5, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19854246

ABSTRACT

Scott syndrome is a rare hereditary bleeding disorder associated with an inability of stimulated platelets to externalize the negatively charged phospholipid, phosphatidylserine (PS). Canine Scott syndrome (CSS) is the only naturally occurring animal model of this defect and therefore represents a unique tool to discover a disease gene capable of producing this platelet phenotype. We undertook platelet function studies and linkage analyses in a pedigree of CSS-affected German shepherd dogs. Based on residual serum prothrombin and flow cytometric assays, CSS segregates as an autosomal recessive trait. An initial genome scan, performed by genotyping 48 dogs for 280 microsatellite markers, suggested linkage with markers on chromosome 27. Genotypes ultimately obtained for a total of 56 dogs at 11 markers on chromosome 27 revealed significant LOD scores for 2 markers near the centromere, with multipoint linkage indicating a CSS trait locus spanning approximately 14 cm. These results provide the basis for fine mapping studies to narrow the disease interval and target the evaluation of putative disease genes.


Subject(s)
Blood Platelets/physiology , Chromosomes, Mammalian/genetics , Dog Diseases/genetics , Genetic Predisposition to Disease , Hemorrhage/veterinary , Animals , Dogs , Female , Genetic Linkage , Genetic Markers , Genome-Wide Association Study , Hemorrhage/genetics , Humans , Lod Score , Male , Pedigree , Prothrombin Time , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...