Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomolecules ; 12(6)2022 06 20.
Article in English | MEDLINE | ID: mdl-35740982

ABSTRACT

HSPA1A is a molecular chaperone that regulates the survival of stressed and cancer cells. In addition to its cytosolic pro-survival functions, HSPA1A also localizes and embeds in the plasma membrane (PM) of stressed and tumor cells. Membrane-associated HSPA1A exerts immunomodulatory functions and renders tumors resistant to standard therapies. Therefore, understanding and manipulating HSPA1A's surface presentation is a promising therapeutic. However, HSPA1A's pathway to the cell surface remains enigmatic because this protein lacks known membrane localization signals. Considering that HSPA1A binds to lipids, like phosphatidylserine (PS) and monophosphorylated phosphoinositides (PIPs), we hypothesized that this interaction regulates HSPA1A's PM localization and anchorage. To test this hypothesis, we subjected human cell lines to heat shock, depleted specific lipid targets, and quantified HSPA1A's PM localization using confocal microscopy and cell surface biotinylation. These experiments revealed that co-transfection of HSPA1A with lipid-biosensors masking PI(4)P and PI(3)P significantly reduced HSPA1A's heat-induced surface presentation. Next, we manipulated the cellular lipid content using ionomycin, phenyl arsine oxide (PAO), GSK-A1, and wortmannin. These experiments revealed that HSPA1A's PM localization was unaffected by ionomycin but was significantly reduced by PAO, GSK-A1, and wortmannin, corroborating the findings obtained by the co-transfection experiments. We verified these results by selectively depleting PI(4)P and PI(4,5)P2 using a rapamycin-induced phosphatase system. Our findings strongly support the notion that HSPA1A's surface presentation is a multifaceted lipid-driven phenomenon controlled by the binding of the chaperone to specific endosomal and PM lipids.


Subject(s)
HSP70 Heat-Shock Proteins , Phosphatidylinositol Phosphates , Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Ionomycin , Phosphatidylinositol Phosphates/metabolism , Wortmannin/metabolism
2.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353252

ABSTRACT

Molecular chaperones, particularly the 70-kDa heat shock proteins (Hsp70s), are key orchestrators of the cellular stress response. To perform their critical functions, Hsp70s require the presence of specific co-chaperones, which include nucleotide exchange factors containing the BCL2-associated athanogene (BAG) domain. BAG-1 is one of these proteins that function in a wide range of cellular processes, including apoptosis, protein refolding, and degradation, as well as tumorigenesis. However, the origin of BAG-1 proteins and their evolution between and within species are mostly uncharacterized. This report investigated the macro- and micro-evolution of BAG-1 using orthologous sequences and single nucleotide polymorphisms (SNPs) to elucidate the evolution and understand how natural variation affects the cellular stress response. We first collected and analyzed several BAG-1 sequences across animals, plants, and fungi; mapped intron positions and phases; reconstructed phylogeny; and analyzed protein characteristics. These data indicated that BAG-1 originated before the animals, plants, and fungi split, yet most extant fungal species have lost BAG-1. Furthermore, although BAG-1's structure has remained relatively conserved, kingdom-specific conserved differences exist at sites of known function, suggesting functional specialization within each kingdom. We then analyzed SNPs from the 1000 genomes database to determine the evolutionary patterns within humans. These analyses revealed that the SNP density is unequally distributed within the BAG1 gene, and the ratio of non-synonymous/synonymous SNPs is significantly higher than 1 in the BAG domain region, which is an indication of positive selection. To further explore this notion, we performed several biochemical assays and found that only one out of five mutations tested altered the major co-chaperone properties of BAG-1. These data collectively suggest that although the co-chaperone functions of BAG-1 are highly conserved and can probably tolerate several radical mutations, BAG-1 might have acquired specialized and potentially unexplored functions during the evolutionary process.


Subject(s)
DNA-Binding Proteins/genetics , Evolution, Molecular , Mutation , Polymorphism, Single Nucleotide , Selection, Genetic , Transcription Factors/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , DNA-Binding Proteins/metabolism , Humans , Phylogeny , Sequence Homology, Amino Acid , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...