Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 101(6-1): 062206, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688588

ABSTRACT

Modeling cooperative dynamics using networks of phase oscillators is common practice for a wide spectrum of biological and technological networks, ranging from neuronal populations to power grids. In this paper we study the emergence of stable clusters of synchrony with complex intercluster dynamics in a three-population network of identical Kuramoto oscillators with inertia. The populations have different sizes and can split into clusters where the oscillators synchronize within a cluster, but notably, there is a phase shift between the dynamics of the clusters. We extend our previous results on the bistability of synchronized clusters in a two-population network [I. V. Belykh et al., Chaos 26, 094822 (2016)CHAOEH1054-150010.1063/1.4961435] and demonstrate that the addition of a third population can induce chaotic intercluster dynamics. This effect can be captured by the old adage "two is company, three is a crowd," which suggests that the delicate dynamics of a romantic relationship may be destabilized by the addition of a third party, leading to chaos. Through rigorous analysis and numerics, we demonstrate that the intercluster phase shifts can stably coexist and exhibit different forms of chaotic behavior, including oscillatory, rotatory, and mixed-mode oscillations. We also discuss the implications of our stability results for predicting the emergence of chimeras and solitary states.

2.
Chaos ; 26(9): 094822, 2016 09.
Article in English | MEDLINE | ID: mdl-27781476

ABSTRACT

We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras.

SELECTION OF CITATIONS
SEARCH DETAIL
...