Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928133

ABSTRACT

BACKGROUND: The immune response dynamics in COVID-19 patients remain a subject of intense investigation due to their implications for disease severity and treatment outcomes. We examined changes in leukocyte levels, eosinophil activity, and cytokine profiles in patients hospitalized with COVID-19. METHODS: Serum samples were collected within the first 10 days of hospitalization/confirmed infection and analyzed for eosinophil granule proteins (EGP) and cytokines. Information from medical records including comorbidities, clinical symptoms, medications, and complete blood counts were collected at the time of admission, during hospitalization and at follow up approximately 3 months later. RESULTS: Serum levels of eotaxin, type 1 and type 2 cytokines, and alarmin cytokines were elevated in COVID-19 patients, highlighting the heightened immune response (p < 0.05). However, COVID-19 patients exhibited lower levels of eosinophils and eosinophil degranulation products compared to hospitalized controls (p < 0.05). Leukocyte counts increased consistently from admission to follow-up, indicative of recovery. CONCLUSION: Attenuated eosinophil activity alongside elevated chemokine and cytokine levels during active infection, highlights the complex interplay of immune mediators in the pathogenesis COVID-19 and underscores the need for further investigation into immune biomarkers and treatment strategies.


Subject(s)
Biomarkers , COVID-19 , Cytokines , Eosinophils , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , Male , Biomarkers/blood , Female , Middle Aged , Eosinophils/immunology , Cytokines/blood , Aged , SARS-CoV-2/immunology , Leukocyte Count , Adult , Hospitalization , Chemokine CCL11/blood
2.
Biomolecules ; 14(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38672419

ABSTRACT

Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate to the inhaled trigger can exacerbate airway diseases such as asthma. Allergens inhaled into previously sensitized airways are known to drive a T2 inflammatory response through the polarization of T cells by dendritic cells mediated by TSLP. Harmful compounds found within air pollution, microbes, and viruses are also triggers causing airway epithelial cell release of TSLP in asthmatic airways. The release of TSLP leads to the development of inflammation which, when unchecked, can result in asthma exacerbations. Genetic and inheritable factors can contribute to the variable expression of TSLP and the risk and severity of asthma. This paper will review the various triggers and consequences of TSLP release in asthmatic airways.


Subject(s)
Asthma , Cytokines , Thymic Stromal Lymphopoietin , Asthma/metabolism , Humans , Cytokines/metabolism , Animals , Allergens/immunology , Alarmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...