Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 8(12): 2746-2755, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31750651

ABSTRACT

Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.


Subject(s)
Metabolic Engineering , Nitrobenzenes/metabolism , Phloroglucinol/metabolism , Escherichia coli/metabolism , Genetic Testing , Phloroglucinol/chemistry
2.
J Am Chem Soc ; 140(12): 4302-4316, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29480720

ABSTRACT

Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.


Subject(s)
Escherichia coli/genetics , Genetic Engineering , Saccharomyces cerevisiae/genetics , Streptomyces/genetics , Aminoglycosides/biosynthesis , Aminoglycosides/chemistry , Carbazoles/chemistry , Carbazoles/metabolism , Computational Biology , Cyclohexane Monoterpenes , Enediynes/chemistry , Escherichia coli/metabolism , Fatty Alcohols/chemistry , Fatty Alcohols/metabolism , Furans/chemistry , Furans/metabolism , Lactones/chemistry , Lactones/metabolism , Molecular Structure , Monoterpenes/chemistry , Monoterpenes/metabolism , Peptides/chemistry , Pressure , Pyrimidine Nucleosides/biosynthesis , Pyrimidine Nucleosides/chemistry , Pyrrolnitrin/biosynthesis , Pyrrolnitrin/chemistry , Saccharomyces cerevisiae/metabolism , Streptomyces/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Time Factors , Vincristine/biosynthesis , Vincristine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...