Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem A Mater ; 6(18): 8507-8513, 2018 May 14.
Article in English | MEDLINE | ID: mdl-30009026

ABSTRACT

Vacancy lattice sites in the metal-organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compensation. Our results show that the preference for missing metal clusters or missing linker defects depends on the charge compensation as well as the overall concentration of defects in the crystal. Both regimes can be experimentally accessible depending on the synthesis conditions. We investigate the electronic structure of the different types of defects, showing that, despite some changes in the localisation of the frontier orbitals, the electronic energy levels are only weakly affected by the presence of point defects.

2.
Phys Chem Chem Phys ; 18(42): 29316-29329, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731872

ABSTRACT

We report the development of a forcefield capable of reproducing accurate lattice dynamics of metal-organic frameworks. Phonon spectra, thermodynamic and mechanical properties, such as free energies, heat capacities and bulk moduli, are calculated using the quasi-harmonic approximation to account for anharmonic behaviour due to thermal expansion. Comparison to density functional theory calculations of properties such as Grüneisen parameters, bulk moduli and thermal expansion supports the accuracy of the derived forcefield model. Material properties are also reported in a full analysis of the lattice dynamics of an initial subset of structures including: MOF-5, IRMOF-10, UiO-66, UiO-67, NOTT-300, MIL-125, MOF-74 and MOF-650.

3.
J Phys Chem C Nanomater Interfaces ; 120(17): 9276-9281, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27610208

ABSTRACT

We report an investigation of the "missing-linker phenomenon" in the Zr-based metal-organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl-/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal-organic frameworks.

4.
Dalton Trans ; 45(10): 4316-26, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26660286

ABSTRACT

A new approach is reported for tailoring the pore geometry in five series of multivariate metal­organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)(2-x)(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)(2-x)(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.

5.
J Chem Theory Comput ; 10(10): 4644-4652, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25574157

ABSTRACT

We present an ab-initio derived force field to describe the structural and mechanical properties of metal-organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted.

6.
Chem Commun (Camb) ; 49(46): 5259-61, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23632734

ABSTRACT

Al2O3 changes from transparent to a range of intense colours depending on the chemical impurities present. In blue sapphire, Fe and Ti are incorporated; however, the chemical process that gives rise to the colour has long been debated. Atomistic modelling identifies charge transfer from Ti(III) to Fe(III) as being responsible for the characteristic blue appearance.

SELECTION OF CITATIONS
SEARCH DETAIL
...