Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297529

ABSTRACT

The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.

2.
Sci Rep ; 12(1): 9654, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688935

ABSTRACT

Cryogels consisting of polyvinyl alcohol and iron (II, III) oxide magnetic nanoparticles coated with a model drug-acetaminophen, were developed as a tunable platform for thermally triggered drug release, based on shape-selective heat transfer. Two different shapes of cryogels; discs and spherical caps, were formed via adding polymer-nanoparticle-drug mixtures into 3D printed molds, followed by freeze-thawing five times. No additional chemical crosslinking agents were used for gel formation and the iron oxide nanoparticles were coated with acetaminophen using only citric acid as a hydrogen-bonding linker. The two gel shapes displayed varying levels of acetaminophen release within 42-50 °C, which are ideal temperatures for hyperthermia induced drug delivery. The amount and time of drug-release were shown to be tunable by changing the temperature of the medium and the shape of the gels, while keeping all other factors (ex. gel volume, surface area, polymer/nanoparticle concentrations and drug-loading) constant. The discs displayed higher drug release at all temperatures while being particularly effective at lower temperatures (42-46 °C), in contrast to the spherical caps, which were more effective at higher temperatures (48-50 °C). Magnetic hyperthermia-mediated thermal imaging and temperature profiling studies revealed starkly different heat transfer behavior from the two shapes of gels. The disc gels retained their structural integrity up to 51 °C, while the spherical caps were stable up to 59 °C, demonstrating shape-dependent robustness. The highly customizable physicochemical features, facile synthesis, biocompatibility and tunable drug release ability of these cryogels offer potential for their application as a low cost, safe and effective platform for hyperthermia-mediated drug delivery, for external applications such as wound care/muscle repair or internal applications such as melanoma treatment.


Subject(s)
Cryogels , Hyperthermia, Induced , Acetaminophen , Gels/chemistry , Humans , Hyperthermia , Hyperthermia, Induced/methods , Magnetic Phenomena , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...