Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Virus Evol ; 9(2): vead066, 2023.
Article in English | MEDLINE | ID: mdl-38131005

ABSTRACT

Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing data.

2.
Microbiome ; 11(1): 158, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491320

ABSTRACT

BACKGROUND: Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. RESULTS: A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica. CONCLUSION: This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. Video Abstract.


Subject(s)
Cattle Diseases , Respiratory Tract Diseases , Rhinitis , Viruses , Animals , Cattle , Australia , Viruses/genetics , Cattle Diseases/microbiology
3.
Microbiol Spectr ; 10(5): e0246322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154439

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is a public health threat accounting for a significant number of hospital-acquired infections. Despite the importance of this pathogen, there is scarce literature on A. baumannii molecular epidemiology and evolutionary pathways relevant to resistance emergence in South American strains. We analyzed the genomic context of 34 CRAb isolates recovered from clinical samples between 2010 and 2013 from two hospitals in Santiago, Chile, using whole-genome sequencing. Several Institut Pasteur scheme sequence types (STs) were identified among the 34 genomes studied here, including ST1, ST15, ST79, ST162, and ST109. No ST2 (the most widespread sequence type) strain was detected. Chilean isolates were phylogenetically closely related, forming lineages specific to South America (e.g., ST1, ST79, and ST15). The genomic contexts of the resistance genes were diverse: while genes were present in a plasmid in ST15 strains, all genes were chromosomal in ST79 strains. Different variants of a small Rep_3 plasmid played a central role in the acquisition of the oxa58 carbapenem and aacC2 aminoglycoside resistance genes in ST1, ST15, and ST79 strains. The aacC2 gene along with blaTEM were found in a novel transposon named Tn6925 here. Variants of Tn7 were also found to play an important role in the acquisition of the aadA1 and dfrA1 genes. This work draws a detailed picture of the genetic context of antibiotic resistance genes in a set of carbapenem-resistant A. baumannii strains recovered from two Chilean hospitals and reveals a complex evolutionary picture of antibiotic resistance gene acquisition events via multiple routes involving several mobile genetic elements. IMPORTANCE Treating infections caused by carbapenem-resistant A. baumannii (CRAb) has become a global challenge given that CRAb strains are also often resistant to a wide range of antibiotics. Analysis of whole-genome sequence data is now a standard approach for studying the genomic context of antibiotic resistance genes; however, genome sequence data from South American countries are scarce. Here, phylogenetic and genomic analyses of 34 CRAb strains recovered from 2010 to 2013 from two Chilean hospitals revealed a complex picture leading to the generation of resistant lineages specific to South America. From these isolates, we characterized several mobile genetic elements, some of which are described for the first time. The genome sequences and analyses presented here further our understanding of the mechanisms leading to multiple-drug resistance, extensive drug resistance, and pandrug resistance phenotypes in South America. Therefore, this is a significant contribution to elucidating the global molecular epidemiology of CRAb.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Chile/epidemiology , Phylogeny , Carbapenems/pharmacology , Aminoglycosides , Drug Resistance, Microbial , Hospitals , Genomics , Microbial Sensitivity Tests , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Transbound Emerg Dis ; 68(1): 2-12, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30945819

ABSTRACT

In December 2016, low pathogenic avian influenza (LPAI) caused by an H7N6 subtype was confirmed in a grow-out turkey farm located in Valparaiso Region, Chile. Depopulation of exposed animals, zoning, animal movement control and active surveillance were implemented to contain the outbreak. Two weeks later, a second grow-out turkey farm located 70 km north of the first site was also infected by H7N6 LPAI, which subsequently spilled over to one backyard poultry flock. The virus involved in the outbreak shared a close genetic relationship with Chilean aquatic birds' viruses collected in previous years. The A/turkey/Chile/2017(H7N6) LPAI virus belonged to a native South American lineage. Based on the H7 and most of the internal genes' phylogenies, these viruses were also closely related to the ones that caused a highly pathogenic avian influenza outbreak in Chile in 2002. Results from this study help to understand the regional dynamics of influenza outbreaks, highlighting the importance of local native viruses circulating in the natural reservoir hosts.


Subject(s)
Disease Outbreaks/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Turkeys , Animals , Chile/epidemiology , Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/virology , Poultry Diseases/virology
5.
Front Vet Sci ; 5: 167, 2018.
Article in English | MEDLINE | ID: mdl-30079340

ABSTRACT

The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control.

6.
Front Vet Sci ; 5: 174, 2018.
Article in English | MEDLINE | ID: mdl-30101147

ABSTRACT

Foot-and-mouth disease (FMD), caused by FMD virus (FMDV; Aphthovirus, Picornaviridae), is a highly contagious and economically important disease of cloven-hoofed domestic livestock and wildlife species worldwide. Subsequent to the clinical phase of FMD, a large proportion of FMDV-infected ruminants become persistently infected carriers, defined by detection of FMDV in oropharyngeal fluid (OPF) samples 28 days or more post-infection. The goal of this prospective study was to characterize the FMD carrier state in cattle subsequent to natural infection under typical husbandry practices in Vietnam. Ten persistently infected cattle on eight farms in the Long An province in southern Vietnam were monitored by monthly screening of serum and oropharyngeal fluid samples for 12 months. To assess transmission from FMDV carriers, 16 naïve cattle were intentionally brought into direct contact with the persistently infected animals for 6 months, and were monitored by clinical and laboratory methods. The restricted mean duration of the FMD carrier state was 27.7 months, and the rate of decrease of the proportion of carrier animals was 0.03 per month. There was no evidence of transmission to naïve animals throughout the study period. Additionally, there was no detection of FMDV infection or seroconversion in three calves born to carrier animals during the study. The force of infection for carrier-to-contact transmission was 0 per month, with upper 95% confidence limit of 0.064 per month. Phylogenetic analysis of viral protein 1 (VP1) coding sequences obtained from carriers indicated that all viruses recovered in this study belonged to the O/ME-SA/PanAsia lineage, and grouped phylogenetically with temporally and geographically related viruses. Analysis of within-host evolution of FMDV, based upon full-length open reading frame sequences recovered from consecutive samples from one animal, indicated that most of the non-synonymous changes occurred in Lpro, VP2, and VP3 protein coding regions. This study suggests that the duration of FMDV persistent infection in cattle may be longer than previously recognized, but the risk of transmission is low. Additional novel insights are provided into within-host viral evolution under natural conditions in an endemic setting.

7.
Infect Genet Evol ; 65: 12-14, 2018 11.
Article in English | MEDLINE | ID: mdl-30017997

ABSTRACT

In this study we report for the first time the phylodynamics of the parapoxvirus (PPV) genus in Mexico. Based on the analysis by PCR of 124 epithelial samples collected between 2007 and 2011 from naturally infected goats, sheep and cows in Mexico, we found that different PPV were present in 21 out of the 24 states sampled during this study. Our phylogenetic analysis confirmed the presence of different PPV species in Mexico, and their phylogenetic relationship with other PPV circulating in the US and Canada. Furthermore, we describe the existence of two different ORFV phylogenetic groups that are clearly host associated (sheep or goat). Evidence of directional selection at five specific amino acid residues in the enveloped glycoprotein B2L might help to support this host predilection. Collectively, the results generated in this study highlight the importance of PPV genus in Mexico and open the possibility for future studies describing with more detail the importance of this genus in North America.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/virology , Genome, Viral , Genomics , Parapoxvirus/classification , Parapoxvirus/genetics , Phylogeny , Poxviridae Infections/veterinary , Animals , DNA, Viral , Genomics/methods , Mexico/epidemiology , Open Reading Frames , Phylogeography
8.
Front Vet Sci ; 3: 105, 2016.
Article in English | MEDLINE | ID: mdl-27917386

ABSTRACT

Understanding the quantitative characteristics of a pathogen's capability to transmit during distinct phases of infection is important to enable accurate predictions of the spread and impact of a disease outbreak. In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies.

9.
Front Microbiol ; 7: 528, 2016.
Article in English | MEDLINE | ID: mdl-27148217

ABSTRACT

Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level.

10.
PLoS One ; 10(5): e0125698, 2015.
Article in English | MEDLINE | ID: mdl-25996935

ABSTRACT

Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95%) and dorsal soft palate (71.43%). FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT). Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE) was identified for IP-10 (RE = 0.198), IFN-ß (RE = 0.269), IL-12 (RE = 0.275), and IL-2 (RE = 0.312). Increased relative expression was detected for IL-6 (RE = 2.065). Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.


Subject(s)
Cattle Diseases/virology , Cytokines/metabolism , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/metabolism , Foot-and-Mouth Disease/virology , Nasopharynx/virology , Animals , Antigens, Viral/immunology , Cattle , Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle Diseases/metabolism , Cytokines/genetics , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/immunology , Gene Expression , Immunohistochemistry , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology
11.
J Am Vet Med Assoc ; 244(5): 582-7, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24548233

ABSTRACT

OBJECTIVE--To evaluate associations between Mycobacterium avium subsp paratuberculosis (MAP) and caudal fold tuberculin (CFT) test results in cattle. DESIGN--Longitudinal and cross-sectional evaluations. ANIMALS--1 California (approx 3,600 cows) and 3 Colorado (approx 640, 1,190, and 1,480 cows) dairy herds considered free of Mycobacterium bovis infection. PROCEDURES--In the California herd, the association between CFT response and MAP status was determined with ELISA and mycobacterial culture of feces within 1 year before and after CFT testing. The association between CFT and MAP status in all herds was modeled with mixed-effects logistic regression. RESULTS--In the California herd, significantly higher odds of being classified as suspect by CFT were found for cows with results of MAP ELISA negative before and positive after CFT testing (OR, 5.6) and cows positive before and after CFT testing (OR, 8.1). Higher odds were found for cows positive for mycobacterial culture of feces before and negative for culture after CFT testing (OR, 4.6) and cows negative for mycobacterial culture of feces before and positive for culture after CFT testing (OR, 13.2). All herds had higher odds of being classified as suspect by CFT testing for cows with positive results for ELISA (OR, 2.9) or mycobacterial culture of feces (OR, 5.0), compared with cows with negative results of the same tests. CONCLUSIONS AND CLINICAL RELEVANCE--A strong association was found between positive MAP test results and being classified as a suspect by CFT testing. Within-herd MAP prevalence may affect specificity of CFT testing for tuberculosis in cattle.


Subject(s)
Cattle Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Feces/microbiology , Mycobacterium avium subsp. paratuberculosis , Mycobacterium bovis , Tuberculin Test/veterinary , Animals , Cattle , Colony Count, Microbial/veterinary , False Positive Reactions , Female , Mycobacterium bovis/immunology , Paratuberculosis/diagnosis , Paratuberculosis/immunology , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/immunology
12.
J Vet Diagn Invest ; 26(1): 88-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24442485

ABSTRACT

Yersinia pseudotuberculosis is a recognized zoonotic food-borne pathogen; however, little is known about the ecology and epidemiology of diseases caused by the bacterium in California. The objective of the current study was to contribute to the knowledge of the diseases caused by Y. pseudotuberculosis in goats, the animal species most frequently reported with clinical yersiniosis to the California Animal Health and Food Safety Laboratory System, to better understand the epidemiology of this disease. A 23-year retrospective study was conducted to characterize the syndromes caused by the bacterium in goats and their temporospatial distribution, and to determine the number of cases in other animal species. Yersinia pseudotuberculosis-associated disease was diagnosed in 42 goats from 21 counties, with a strong seasonality in winter and spring. Most cases (88%) were observed within particular years (1999, 2004-2006, 2010-2011). The most frequently diagnosed syndrome was enteritis and/or typhlocolitis (64.3%), followed by abscessation (14.3%), abortion (11.9%), conjunctivitis (4.75%), and hepatitis (4.75%). Among other animal species, 59 cases were diagnosed in non-poultry avian species and 33 in mammals other than goats.


Subject(s)
Goat Diseases/microbiology , Yersinia pseudotuberculosis Infections/veterinary , Yersinia pseudotuberculosis/isolation & purification , Zoonoses/microbiology , Animals , Birds , California/epidemiology , Goat Diseases/epidemiology , Goats , Retrospective Studies , Seasons , Yersinia pseudotuberculosis Infections/epidemiology , Yersinia pseudotuberculosis Infections/microbiology , Zoonoses/epidemiology
13.
J Vet Diagn Invest ; 23(4): 753-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21908318

ABSTRACT

Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.


Subject(s)
Bluetongue virus/isolation & purification , Bluetongue/virology , Camelids, New World , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Bluetongue/blood , Cattle , Cattle Diseases/blood , Cattle Diseases/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Serologic Tests , Sheep , Sheep Diseases/blood , Sheep Diseases/virology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...