Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049149

ABSTRACT

Construction and demolition waste (CDW) from earthquake rubbles was used here as recycled aggregates (RA) in cementitious binders. The materials were sorted in six groups: concrete (CO), natural stone (NS), tile (TI), brick (BR), perforated brick (PF) and roof tile (RT). The abundance (wt.%) of crystalline phases in each RA type was determined by X-ray Powder Diffraction (XRPD). Each group of RAs was used alone (100 wt.% of RA) and mixed with quartz-rich virgin aggregates (VA) to prepare 13 types of mortars (12 specimens per type): one reference mortar (RM) with only VA, six recycled aggregate mortars (RAM) and six recycled-plus-virgin aggregate mortars (RVAM). The physical and mechanical properties of aggregates and mortars reflect the type and abundance of crystalline phases in each CDW group. Recycled mortars rich in concrete, natural stones and tiles have better mechanical performance than mortars prepared with recycled bricks, perforated bricks and roof tiles. For each RA, RVAMs have superior mechanical characteristics than the corresponding RAM. Since the type and amount of phases contained in recycled aggregates strongly control the mechanical performance of new construction materials, they should be routinely quantified as reported here, in addition to other physical features (water absorption, density, etc.). The separation of heterogeneous CDW into homogeneous RA groups is necessary for the production of new construction materials with stable and predictable performances to ensure CDW recycling, especially in areas hit by major adverse events, where large amounts of still valuable materials could be used for reconstruction processes.

2.
Materials (Basel) ; 15(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454434

ABSTRACT

The main factor that alters the quality of recycled concrete aggregate (RCA) is the paste adhered to the natural aggregate (NA). Since it causes weakening of the interfacial transition zone (ITZ) between the aggregate and the cementitious paste, it becomes a determining factor for the mechanical behavior of concrete. It turns out that it is critical to enhance this interface by improving the surface of the aggregate or by removing the paste adhered to the NA. Considering the variety of methods for removing paste adhered to RCA-namely using acids such as hydrochloric acid (HCl), sulfuric acid (H2SO4), and phosphoric acid (H3PO4), among others-this paper presents a review of treatments for the removal of adhered paste using acidic solutions on the RCA, and their influence on the mechanical properties and durability of concrete produced with RCA. Pearson's correlation was used in the statistical analysis to determine the linear relationship of the main factors-for instance, immersion time, acidic solution, and aggregate size-involved in the removal of the paste in the RCA.

3.
Materials (Basel) ; 13(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075141

ABSTRACT

The use of construction and demolition wastes (C&DW) is a trending future option for the sustainability of construction. In this context, a number of works deal with the use of recycled concrete aggregates to produce concrete for structural and non-structural purposes. Nowadays, an important number of C&DW management plants in the European Union (EU) and other countries have developed robust protocols to obtain high-quality coarse recycled aggregates that comply with different European standards in order to be used to produce new concrete. The development of self-compacting concrete (SCC) is another way to boost the sustainability of construction, due to the important reduction of energy employed. Using recycled aggregates is a relatively recent scientific area, however, studies on this material in the manufacture of self-compacting concrete have proven the feasibility thereof for conventional structural elements as well as high-performance and complex structural elements, densely reinforced structures, difficult-to-access formwork and difficult-to-vibrate elements. This paper presents an original study on the use of coarse recycled concrete aggregate (CRA) to obtain self-compacting concrete. Concrete with substitution ratios of 20%, 50% and 100% are compared with a control concrete. The purpose of this comparison is to check the influence of CRA on fresh SCC as well as its physical and mechanical properties. The parameters studied are material characterization, self-compactability, compressive strength, and tensile and flexural strength of the resulting concrete. The results conclude that it is feasible to use CRA for SCC production with minimal losses in the characteristics.

4.
Materials (Basel) ; 12(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671652

ABSTRACT

The urgent need to change the less positive impacts of the construction industry on the environment, and more specifically the production and use of concrete, is the main motivation for the research for more efficient and environmentally sustainable solutions. This paper presented the results of an experimental campaign whose ultimate goal was to produce high-performance self-compacting concrete (SCC) using recycled aggregates (RA) from the precast industry. The results of the fresh-state and mechanical properties tests performed on six concrete mixes (using RA from the precast industry) were presented. The first concrete mix is a reference mix using natural aggregates only (100% NA), and the remaining five mixes had various contents of fine (FRA) and coarse (CRA) recycled aggregates in concrete's composition: (2) 25/25% (25% RA); (3) 50/50% (50% RA); (4) 100/100% (100% RA); (5) 0/100% (100% CRA); (6) 100/0% (100% FRA). The results showed that the high-performance concrete mixes with RA from the precast industry performed worse than the reference mix. However, taking into account all the mechanical properties studied, it can be concluded that RA from precast concrete elements are of very good quality and can be incorporated in the production of high-performance SCC. The potential demonstrated by the combined use of fine and coarse recycled aggregates was also emphasized. This type of work is expected to effectively contribute to raise awareness among the various players in the construction industry, particularly in the precast concrete industry, to the feasibility of using RA in significant quantities (notably coarse aggregates) and to the safety needed to assume structural functions, even for applications where high performance is required.

5.
Microsc Microanal ; 22(6): 1281-1303, 2016 12.
Article in English | MEDLINE | ID: mdl-27869040

ABSTRACT

In this paper the characterization of a gypsum plaster sample from the end of the 19th century simulating imperial red porphyry using a multi-analytical approach is presented and discussed. The results of X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TGA-DTA), physical and mechanical properties are summarized. In order to have further insight into the microstructure, polarized light microscopy (PLM), scanning electron microscopy coupled with energy dispersive X-ray spectrometer (SEM-EDS), and micro Raman spectroscopy analyzes were also made. They helped to clarify the main issues raised by the other complementary analytical techniques and allowed the establishment of interrelations between the different properties, providing important information about the materials, the skills, and the technological development involved in the art of imitating noble stones with gypsum pastes. This study also contributes to our knowledge concerning the preservation of these types of elements that are important in the context of European decorative arts and rarely reported in the literature.

6.
Waste Manag ; 49: 131-145, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26748436

ABSTRACT

The use of recycled aggregates (RA) in construction constitutes a significant step towards a more sustainable society and also creates a new market opportunity to be exploited. In recent years, several case-studies have emerged in which RA were used in Geotechnical applications, such as filling materials and in unbound pavement layers. This paper presents a review of the most important physical properties of different types of RA and their comparison with natural aggregates (NA), and how these properties affect their hydraulic and mechanical behaviour when compacted. Specifically, the effects of compaction on grading size distribution curves and density are analysed, as well as the consequences of particle crushing on the resilient modulus, CBR and permeability. The paper also contains an analysis of the influence of incorporating different RA types on the performance of unbound road pavement layers as compared with those built with NA by means of the International Roughness Index and deflection values. The results collected from the literature indicate that the performance of most RA is comparable to that of NA and can be used in unbound pavement layers or in other applications requiring compaction.


Subject(s)
Construction Materials , Recycling , Waste Management/methods , Freezing , Permeability , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...