Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
2.
Nat Genet ; 39(7): 839-47, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17572675

ABSTRACT

Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.


Subject(s)
Genome , Genomics , Leishmania/genetics , Leishmaniasis/parasitology , Amino Acid Sequence , Animals , Humans , Leishmania braziliensis/genetics , Leishmania infantum/genetics , Leishmania major/genetics , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Molecular Sequence Data
3.
Int J Parasitol ; 37(7): 735-42, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17362967

ABSTRACT

The use of transposable elements as a gene-trapping strategy is a powerful tool for gene discovery. Herein we describe the development of a transposable system, based on the bacterial Tn5 transposon, which has been used successfully in Leishmania braziliensis. The transposon carries the neomycin phosphotransferase gene, which is expressed only when inserted in-frame with a Leishmania gene present in the target DNA. Four cosmid clones from a L. braziliensis genomic library were used as targets in transposition reactions and four insertional libraries were constructed and transfected in L. braziliensis. Clones resistant to G418 were selected and analysed by immunofluorescence in order to identify the subcellular localisation of the protein coded by the trapped gene. A definitive subcellular localisation for neomycin phosphotransferase/targeted protein fusion was not obtained in any of the four Leishmania clones investigated. However, the constructed transposable element is highly efficient considering the frequency of insertion in large targets and is therefore a useful tool for functional genetic studies in Leishmania. Our data confirm the utility of the Tn5 transposon system for insertion of sequencing priming sites into target DNA. Furthermore, the high frequency of insertion and even distribution are important in studying genomic regions bearing long and polymorphic repetitive sequences.


Subject(s)
DNA Transposable Elements/genetics , Leishmania braziliensis/genetics , Amino Acid Sequence , Animals , Base Sequence , Gene Library , Genomics/methods , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Insertional , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...