Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 16(5): 1011-1026, 2023 05.
Article in English | MEDLINE | ID: mdl-36965151

ABSTRACT

The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L-1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanol-based overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.


Subject(s)
Metabolic Engineering , Methanol , Methanol/metabolism , Plasmids , Biotechnology/methods , Riboflavin/genetics
2.
Front Bioeng Biotechnol ; 10: 863690, 2022.
Article in English | MEDLINE | ID: mdl-35497351

ABSTRACT

The increasing global demand for food and energy production encourages the development of new production strategies focused on sustainability. Often, microbial bioprocesses rely on food or feed competitive feedstocks; hence, there is a trending need for green substrates. Here, we have proven the potential of brown seaweed biomass as microbial feedstock on account of its content of mannitol and the glucose polymer laminarin. Our host, Corynebacterium glutamicum, was engineered to enable access to mannitol as a carbon source through the heterologous expression of the mannitol-specific phosphotransferase system and the mannitol-1-phosphate-5-dehydrogenase from Bacillus subtilis. Overproduction of riboflavin was coupled with mannitol and glucose consumption via constitutive overexpression of the biosynthetic riboflavin operon ribGCAH from C. glutamicum. Brown seaweed extract and brown seaweed hydrolysate from Laminaria hyperborea, containing mannitol and glucose, were used as a carbon source for flask and bioreactor fermentations. In a seaweed-based fed-batch fermentation, the riboflavin final titer, yield, and volumetric productivity values of 1,291.2 mg L-1, 66.1 mg g-1, and 17.2 mg L-1 h-1, respectively, were achieved.

3.
Front Bioeng Biotechnol ; 9: 686319, 2021.
Article in English | MEDLINE | ID: mdl-34262896

ABSTRACT

The use of methanol as carbon source for biotechnological processes has recently attracted great interest due to its relatively low price, high abundance, high purity, and the fact that it is a non-food raw material. In this study, methanol-based production of 5-aminovalerate (5AVA) was established using recombinant Bacillus methanolicus strains. 5AVA is a building block of polyamides and a candidate to become the C5 platform chemical for the production of, among others, δ-valerolactam, 5-hydroxy-valerate, glutarate, and 1,5-pentanediol. In this study, we test five different 5AVA biosynthesis pathways, whereof two directly convert L-lysine to 5AVA and three use cadaverine as an intermediate. The conversion of L-lysine to 5AVA employs lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA), encoded by the well-known Pseudomonas putida cluster davBA, among others, or lysine α-oxidase (RaiP) in the presence of hydrogen peroxide. Cadaverine is converted either to γ-glutamine-cadaverine by glutamine synthetase (SpuI) or to 5-aminopentanal through activity of putrescine oxidase (Puo) or putrescine transaminase (PatA). Our efforts resulted in proof-of-concept 5AVA production from methanol at 50°C, enabled by two pathways out of the five tested with the highest titer of 0.02 g l-1. To our knowledge, this is the first report of 5AVA production from methanol in methylotrophic bacteria, and the recombinant strains and knowledge generated should represent a valuable basis for further improved 5AVA production from methanol.

4.
BMC Genomics ; 18(1): 846, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29100491

ABSTRACT

BACKGROUND: The plant growth promoting rhizobacterium Paenibacillus riograndensis SBR5 is a promising candidate to serve as crop inoculant. Despite its potential in providing environmental and economic benefits, the species P. riograndensis is poorly characterized. Here, we performed for the first time a detailed transcriptome analysis of P. riograndensis SBR5 using RNA-seq technology. RESULTS: RNA was isolated from P. riograndensis SBR5 cultivated under 15 different growth conditions and combined together in order to analyze an RNA pool representing a large set of expressed genes. The resultant total RNA was used to generate 2 different libraries, one enriched in 5'-ends of the primary transcripts and the other representing the whole transcriptome. Both libraries were sequenced and analyzed to identify the conserved sequences of ribosome biding sites and translation start motifs, and to elucidate operon structures present in the transcriptome of P. riograndensis. Sequence analysis of the library enriched in 5'-ends of the primary transcripts was used to identify 1082 transcription start sites (TSS) belonging to novel transcripts and allowed us to determine a promoter consensus sequence and regulatory sequences in 5' untranslated regions including riboswitches. A putative thiamine pyrophosphate dependent riboswitch upstream of the thiamine biosynthesis gene thiC was characterized by translational fusion to a fluorescent reporter gene and shown to function in P. riograndensis SBR5. CONCLUSIONS: Our RNA-seq analysis provides insight into the P. riograndensis SBR5 transcriptome at the systems level and will be a valuable basis for differential RNA-seq analysis of this bacterium.


Subject(s)
Gene Expression Profiling , Paenibacillus/genetics , Paenibacillus/physiology , Plant Development , Plants/microbiology , Sequence Analysis, RNA , 5' Untranslated Regions/genetics , Nucleotide Motifs , Promoter Regions, Genetic/genetics , RNA, Bacterial/genetics
5.
Appl Microbiol Biotechnol ; 101(2): 735-747, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27878581

ABSTRACT

Members of the genus Paenibacillus are widespread facultative anaerobic, endospore-forming bacteria. Some species such as Paenibacillus riograndensis or Paenibacillus polymyxa fix nitrogen and may play an important role in agriculture to reduce mineral nitrogen fertilization in particular for non-legume plants. The genetic manipulation of Paenibacillus is an imperative for the functional characterization, e.g., of its plant growth-promoting activities and metabolism. This study showed that P. riograndensis and P. polymyxa can be readily transformed using physical permeation by magnesium aminoclays. By means of the fluorescent reporter genes gfpUV, mcherry, and crimson, a two-plasmid system consisting of a theta-replicating plasmid and a rolling circle-replicating plasmid was shown to operate in both species. Xylose-inducible and mannitol-inducible fluorescent reporter gene expression was demonstrated in the compatible two-plasmid system by fluorescence-activated cell scanning. As a metabolic engineering application, the biotin requiring P. riograndensis was converted to a biotin-prototrophic strain based on mannitol-inducible expression of the biotin biosynthesis operon bioWAFDBI from Bacillus subtilis.


Subject(s)
Gene Expression , Gene Transfer Techniques , Genetic Engineering/methods , Magnesium/metabolism , Molecular Biology/methods , Paenibacillus/genetics , Transformation, Bacterial , Genes, Reporter , Genetic Vectors , Metabolic Engineering , Plasmids
6.
J Biotechnol ; 234: 139-157, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27491712

ABSTRACT

Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given.


Subject(s)
Bacillus/metabolism , Carbon/chemistry , Corynebacterium glutamicum/metabolism , Escherichia coli/metabolism , Pseudomonas/metabolism , Yeasts/metabolism , Bacillus/genetics , Biofuels/microbiology , Biomass , Biotechnology/methods , Carbon/metabolism , Corynebacterium glutamicum/genetics , Escherichia coli/genetics , Metabolic Engineering , Pseudomonas/genetics , Yeasts/genetics
7.
J Biotechnol ; 207: 30-1, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-25959170

ABSTRACT

Paenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5(T). The genome of P. riograndensis SBR5(T) consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5(T) can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5(T) as plant growth-promoting rhizobacterium.


Subject(s)
Genome, Bacterial , Paenibacillus/genetics , Sequence Analysis, DNA/methods , Molecular Sequence Annotation , Plant Development , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...