Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 28(8): 973-982, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31420785

ABSTRACT

The diamondback moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) is a destructive pest of brassica crops of economic importance that have resistance to a range of insecticides. Indole derivates can exert diverse biological activities, and different effects may be obtained from small differences in their molecular structures. Indole is the parent substance of a large number of synthetic and natural compounds, such as plant and animal hormones. In the present study, we evaluate the insecticidal activity of 20 new synthesized indole derivatives against P. xylostella, and the selectivity of these derivatives against non-target hymenopteran beneficial arthropods: the pollinator Apis mellifera (Linnaeus, 1758) (Hymenoptera: Apidae), and the predators Polybia scutellaris (White, 1841), Polybia sericea (Olivier, 1791) and Polybia rejecta (Fabricius, 1798) (Hymenoptera: Vespidae). Bioassays were performed in the laboratory to determine the lethal and sublethal effects of the compounds on P. xylostella and to examine their selectivity to non-target organisms by topical application and foliar contact. The treatments consisted of two synthesized derivatives (most and least toxic), the positive control (deltamethrin) and the negative control (solvent). The synthesized compound 4e [1-(1H-indol-3-yl)hexan-1-one] showed high toxicity (via topical application and ingestion) and decreased the leaf consumption by P. xylostella, displaying a higher efficiency than the pyrethroid deltamethrin, widely used to control this pest. In addition, the synthesized indole derivatives were selective to the pollinator A. mellifera and the predators P. scutellaris, P. sericea and P. rejecta, none of which were affected by deltamethrin. Our results highlight the promising potential of the synthesized indole derivatives for the generation of new chemical compounds for P. xylostella management.


Subject(s)
Bees/drug effects , Indoles/toxicity , Insecticides/toxicity , Moths/drug effects , Wasps/drug effects , Animals , Indoles/pharmacology , Insecticides/pharmacology , Larva/drug effects
2.
Environ Sci Pollut Res Int ; 25(31): 31165-31174, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30187415

ABSTRACT

Zika, dengue, and chikungunya are vector-borne diseases of pronounced concern transmitted by the mosquito Aedes aegypti Linn. (Diptera: Culicidae). The most important method to avoid outbreaks is to control mosquito spreading by the employment of insecticides and larvicides. Failure to control mosquito dispersal is mostly accounted to Ae. aegypti resistance to currently available larvicides and insecticides, encouraging the development of novel pesticides. In addition, the excessive use of larvicides poses serious threats to human health and the environment. Evaluation of natural products as larvicides in an attempt to overcome this situation is often found in the literature because products originated from nature are considered less toxic to non-target species and more eco-friendly. (-)-Borneol is a bicyclic monoterpene present in essential oils with moderate larvicidal activity. On account of these facts, it was of our interest to synthesize (-)-borneol ester derivatives aiming to study its structure-activity relationships against Ae. aegypti larvae. With the goal to estimate toxicity to a non-target species, evaluation of the lethal concentration 50% (LC50) on Artemia sp. (Artemiidae) and calculation of selectivity towards Ae. aegypti were carried out. The most potent derivative, (-)-Bornyl chloroacetate, exhibited the highest suitability index, demonstrating lower environmental toxicity than other borneol ester derivatives. A parabolic relationship between (-)-borneol esters larvicidal activity and partition coefficient (Log P) was achieved and a correlation equation obtained, validating the importance of lipophilicity to the larvicidal activity of these compounds.


Subject(s)
Aedes/drug effects , Artemia/drug effects , Camphanes/toxicity , Insecticides/toxicity , Mosquito Vectors/drug effects , Animals , Esters , Larva/drug effects , Lethal Dose 50 , Zika Virus Infection/transmission
3.
Med Chem ; 10(6): 580-7, 2014.
Article in English | MEDLINE | ID: mdl-24295020

ABSTRACT

Special attention has been given to the mosquito Aedes aegypti Linn. (Diptera: Culicidae) owing to numerous dengue epidemic outbreaks worldwide. Failure to control vector spreading is accounted for unorganized urban growth and resistance to larvicides and insecticides. Therefore, researchers are currently searching for new and more efficient larvicides and insecticides to aid dengue control measures. Triptamine is known to affect insect behavior, development, and physiology. Expression of this compound in plants has reduced the growth rate of herbivore insects. In view of these facts, it was of our interest to synthesize triptamine amide derivatives as potential larvicides against Ae. aegypti, establishing a Structure-Activity Relationship. Eleven amide derivatives of triptamine were synthesized, characterized, and evaluated for their larvicidal activity against third-instar Ae. aegypti larvae. N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trichloroacetamide exhibited the highest overall larvicidal potency, while N-(2-(1H-Indol-3-yl)ethyl) acetamide displayed the lowest larvicidal potency. A regression equation correlating the larvicidal activity with Log P was obtained. We have found a clear relationship between the larvicidal activity of non-chlorinated compounds and Log P. Analysis of the relationship between Log P and larvicidal activity against Ae. aegypti may be useful in the evaluation of potential larvicidal compounds.


Subject(s)
Aedes/drug effects , Insecticides/chemistry , Insecticides/chemical synthesis , Tryptamines/chemistry , Tryptamines/chemical synthesis , Aedes/growth & development , Animals , Dengue/prevention & control , Insecticides/pharmacology , Larva , Lethal Dose 50 , Molecular Structure , Quantitative Structure-Activity Relationship , Tryptamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...