Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 323: 114839, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923063

ABSTRACT

Studies reporting the expression of hepatitis A virus (HAV) structural proteins, specifically recombinant VP1-2A containing an immunogenic activity, use the Escherichia coli system. Recombinant HAV proteins may represent a source of less expensive antigens for application in different diagnostic platforms. However, the formation of insoluble aggregates is an obstacle to obtaining large amounts of HAV proteins in their native form. To overcome this obstacle, some approaches were applied in this study to improve purification, solubility, and protein expression levels. Critical properties were evaluated. The introduction of another insertion codon to increase the protein concentration and vector activity was observed and verified by SDS-PAGE. The expression was established with 0.4 mM IPTG for 4 h at 37 °C. The VP1 protein was partially soluble at an isoeletric point (pI) of 6.45. The majority of HAV VP1-2A proteins measured 45.19 kDa in size and had a homogeneity of 53.58%. Multi-antigen print immunoassay (MAPIA) showed antigenicity at different HAV VP1-2A concentrations, and microsphere-based immunoassays showed a specificity of 100% and a sensitivity of 84%. HAV VP1-2A was characterized using different sensitivity methods to prove its biological activity, indicating its use as a tool for the diagnosis of Hepatitis A virus infection.


Subject(s)
Hepatitis A virus , Hepatitis A , Humans , Hepatitis A virus/genetics , Recombinant Proteins , Hepatitis A/diagnosis
2.
Vaccines (Basel) ; 11(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38006064

ABSTRACT

Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.

3.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146723

ABSTRACT

Infections caused by SARS-CoV-2 induce a severe acute respiratory syndrome called COVID-19 and have led to more than six million deaths worldwide. Vaccination is the most effective preventative measure, and cellular and humoral immunity is crucial to developing individual protection. Here, we aim to investigate hybrid immunity against SARS-CoV-2 triggered by the ChAadOx1 nCoV-19 vaccine in a Brazilian cohort. We investigated the immune response from ChAadOx1 nCoV-19 vaccination in naïve (noCOVID-19) and previously infected individuals (COVID-19) by analyzing levels of D-dimers, total IgG, neutralizing antibodies (Nabs), IFN-γ (interferon-γ) secretion, and immunophenotyping of memory lymphocytes. No significant differences in D-dimer levels were observed 7 or 15 days after vaccination (DAV). All vaccinated individuals presented higher levels of total IgG or Nabs with a positive correlation (R = 0.88). Individuals in the COVID-19 group showed higher levels of antibody and memory B cells, with a faster antibody response starting at 7 DAV compared to noCOVID-19 at 15 DAV. Further, ChAadOx1 nCoV-19 vaccination led to enhanced IFN-γ production (15 DAV) and an increase in activated T CD4+ naïve cells in noCOVID-19 individuals in contrast with COVID-19 individuals. Hence, our data support that hybrid immunity triggered by ChAadOx1 nCoV-19 vaccination is associated with enhanced humoral response, together with a balanced cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Interferon-gamma , SARS-CoV-2 , Vaccination
4.
Pharmaceuticals (Basel) ; 15(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35631401

ABSTRACT

The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.

5.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34571855

ABSTRACT

The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity, Cellular , Models, Biological , SARS-CoV-2/physiology , Adult , Alveolar Epithelial Cells/virology , COVID-19/blood , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation , Humans , Immunologic Memory/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/virology , Male , Middle Aged , Phenotype , T-Lymphocytes/immunology , Virus Replication/physiology , Young Adult
6.
J Immunol Res ; 2020: 8827670, 2020.
Article in English | MEDLINE | ID: mdl-33426096

ABSTRACT

The severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2), termed COVID-19, has been highlighted as the most important infectious disease of our time, without a vaccine and treatment available until this moment, with a big impact on health systems worldwide, and with high mortality rates associated with respiratory viral disease. The medical and scientific communities have also been confronted by an urgent need to better understand the mechanism of host-virus interaction aimed at developing therapies and vaccines. Since this viral disease can trigger a strong innate immune response, causing severe damage to the pulmonary tract, immunotherapies have also been explored as a means to verify the immunomodulatory effect and improve clinical outcomes, whilst the comprehensive COVID-19 immunology still remains under investigation. In this review, both cellular and molecular immunopathology as well as hemostatic disorders induced by SARS-CoV-2 are summarized. The immunotherapeutic approaches based on the most recent clinical and nonclinical studies, emphasizing their effects for the treatment of COVID-19, are also addressed. The information presented elucidates helpful insights aiming at filling the knowledge gaps around promising immunotherapies that attempt to control the dysfunction of host factors during the course of this infectious viral disease.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunotherapy/methods , Anti-Inflammatory Agents/therapeutic use , Antibodies, Viral/immunology , Antiviral Agents/therapeutic use , B-Lymphocytes/immunology , Humans , Immunization, Passive/methods , Immunologic Memory/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...