Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358390

ABSTRACT

The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.


The human brain contains billions of neurons working together to process the vast array of information we receive from our environment. These neurons communicate at junctions known as synapses, where chemical packages called vesicles released from one neuron stimulate a response in another. This synaptic communication is crucial for our ability to think, learn and remember. However, this activity depends on a complex interplay of proteins, whose balance and location within the neuron are tightly controlled. Any disruption to this delicate equilibrium can cause significant problems, including neurodevelopmental and neuropsychiatric disorders, such as schizophrenia and intellectual disability. One key regulator of activity at the synapse is a protein called Bcl11b, which has been linked to conditions affected by synaptic dysfunction. It plays a critical role in maintaining specific junctions known as mossy fibre synapses, which are important for learning and memory. One of the genes regulated by Bcl11b is C1ql2, which encodes for a synaptic protein. However, it is unclear what molecular mechanisms Bcl11b uses to carry out this role. To address this, Koumoundourou et al. explored the role of C1ql2 in mossy fibre synapses of adult mice. Experiments to manipulate the production of C1ql2 independently of Bcl11b revealed that C1ql2 is vital for recruiting vesicles to the synapse and strengthening synaptic connections between neurons. Further investigation showed that C1ql2's role in this process relies on interacting with another synaptic protein called neurexin-3. Disrupting this interaction reduced the amount of C1ql2 at the synapse and, consequently, impaired vesicle recruitment. These findings will help our understanding of how neurodevelopmental and neuropsychiatric disorders develop. Bcl11b, C1ql2 and neurexin-3 have been independently associated with these conditions, and the now-revealed interactions between these proteins offer new insights into the molecular basis of synaptic faults. This research opens the door to further study of how these proteins interact and their roles in brain health and disease.


Subject(s)
Mossy Fibers, Hippocampal , Synapses , Animals , Mice , Transcription Factors , Synaptic Vesicles , Tumor Suppressor Proteins , Repressor Proteins
2.
Biology (Basel) ; 13(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392344

ABSTRACT

Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.

3.
Biology (Basel) ; 12(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37759634

ABSTRACT

Transcription factors (TFs) regulate gene expression via direct DNA binding together with cofactors and in chromatin remodeling complexes. Their function is thus regulated in a spatiotemporal and cell-type-specific manner. To analyze the functions of TFs in a cell-type-specific context, genome-wide DNA binding, as well as the identification of interacting proteins, is required. We used i-GONAD (improved genome editing via oviductal nucleic acids delivery) in mice to genetically modify TFs by adding fluorescent reporter and affinity tags that can be exploited for the imaging and enrichment of target cells as well as chromatin immunoprecipitation and pull-down assays. As proof-of-principle, we showed the functional genetic modification of the closely related developmental TFs, Bcl11a and Bcl11b, in defined cell types of newborn mice. i-GONAD is a highly efficient procedure for modifying TF-encoding genes via the integration of small insertions, such as reporter and affinity tags. The novel Bcl11a and Bcl11b mouse lines, described in this study, will be used to improve our understanding of the Bcl11 family's function in neurodevelopment and associated disease.

4.
EMBO Rep ; 23(8): e54104, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35766181

ABSTRACT

Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper-layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6-dependent molecular pathway in regulation of developmental cell death during corticogenesis.


Subject(s)
Neocortex , Transcription Factors , Cell Death/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Neocortex/metabolism , Neurons/metabolism , Transcription Factors/metabolism
5.
Cell Rep ; 36(11): 109697, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525371

ABSTRACT

Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.


Subject(s)
Dopaminergic Neurons/metabolism , Repressor Proteins/metabolism , Animals , Behavior, Animal , Brain/metabolism , Dopamine/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Knockout , Repressor Proteins/deficiency , Repressor Proteins/genetics , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transcriptome , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
6.
J Neurochem ; 157(6): 2055-2069, 2021 06.
Article in English | MEDLINE | ID: mdl-33220080

ABSTRACT

Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.


Subject(s)
Crystallins/metabolism , Dendrites/metabolism , Hippocampus/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Animals , Cells, Cultured , Dendrites/pathology , Female , Hippocampus/cytology , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Phosphorylation/physiology , Pregnancy , Rats , Rats, Sprague-Dawley
7.
Front Mol Neurosci ; 13: 51, 2020.
Article in English | MEDLINE | ID: mdl-32322190

ABSTRACT

Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.

8.
Neurosci Lett ; 704: 116-125, 2019 06 21.
Article in English | MEDLINE | ID: mdl-30953735

ABSTRACT

In multiple sclerosis (MS) regeneration of oligodendrocytes following inflammatory demyelination is limited by the compromised ability of progenitors to repopulate lesioned areas and transition to functionally competent oligodendrocytes. Regarding underlying mechanisms, the involvement of epigenetic processes has been suggested, e.g. the contribution of histone deacetylases (HDAC) known to regulate oligodendrocyte progenitor cell (OPC) differentiation. However, their precise expression patterns, particular of redox-sensitive NAD+ HDACs, remains largely unknown. In this study, we determined the expression and activity of sirtuins, members of the HDAC class III family with a specific focus on SIRT1, previously associated with neurodegenerative, inflammatory and demyelinating disorders of the central nervous system (CNS). By investigating mouse experimental autoimmune encephalomyelitis (EAE), a model for MS, we found that transcription of SIRT1, SIRT2 and SIRT6 was significantly increased in the CNS during chronic disease stages. We confirmed this finding for SIRT1 protein expression and were able to localize upregulated SIRT1 in nuclei of NG2+ or PDGFRα+ OPCs in demyelinated brain lesions. In cultured mouse A2B5+ OPCs blockade of SIRT1 activity by the small molecule compound Ex527 enhanced mitotic activity but did not affect the capacity to differentiate. A similar pattern was detectable in OPCs derived from SIRT1-deficient animals. Taken together, our data suggest that SIRT1 inhibition may help to expand the endogenous pool of OPCs without affecting their differentiation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Oligodendroglia/metabolism , Sirtuins/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cerebellum/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice, Inbred C57BL , Mitosis , Oligodendroglia/pathology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Stem Cells/pathology , White Matter/metabolism
9.
J Clin Invest ; 128(11): 5056-5072, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30320600

ABSTRACT

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.


Subject(s)
Fetal Proteins/metabolism , Inflammatory Bowel Diseases/enzymology , Intestines/enzymology , Multiple Organ Failure/enzymology , Multiple Trauma/enzymology , Protein-Tyrosine Kinases/metabolism , Systemic Inflammatory Response Syndrome/enzymology , Animals , Disease Models, Animal , Female , Fetal Proteins/genetics , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Intestines/pathology , Mice , Multiple Organ Failure/etiology , Multiple Organ Failure/genetics , Multiple Organ Failure/pathology , Multiple Trauma/complications , Multiple Trauma/genetics , Multiple Trauma/pathology , Protein-Tyrosine Kinases/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Swine , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/pathology , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
Glia ; 66(12): 2617-2631, 2018 12.
Article in English | MEDLINE | ID: mdl-30256452

ABSTRACT

We and others previously showed that in mouse embryos lacking the transcription factor Sox10, olfactory ensheathing cell (OEC) differentiation is disrupted, resulting in defective olfactory axon targeting and fewer gonadotropin-releasing hormone (GnRH) neurons entering the embryonic forebrain. The underlying mechanisms are unclear. Here, we report that OECs in the olfactory nerve layer express Frzb-encoding a secreted Wnt inhibitor with roles in axon targeting and basement membrane breakdown-from embryonic day (E)12.5, when GnRH neurons first enter the forebrain, until E16.5, the latest stage examined. The highest levels of Frzb expression are seen in OECs in the inner olfactory nerve layer, abutting the embryonic olfactory bulb. We find that Sox10 is required for Frzb expression in OECs, suggesting that loss of Frzb could explain the olfactory axon targeting and/or GnRH neuron migration defects seen in Sox10-null mice. At E16.5, Frzb-null embryos show significant reductions in both the volume of the olfactory nerve layer expressing the maturation marker Omp and the number of Omp-positive olfactory receptor neurons in the olfactory epithelium. As Omp upregulation correlates with synapse formation, this suggests that Frzb deletion indeed disrupts olfactory axon targeting. In contrast, GnRH neuron entry into the forebrain is not significantly affected. Hence, loss of Frzb may contribute to the olfactory axon targeting phenotype, but not the GnRH neuron phenotype, of Sox10-null mice. Overall, our results suggest that Frzb secreted from OECs in the olfactory nerve layer is important for olfactory axon targeting.


Subject(s)
Axons/metabolism , Gene Expression Regulation, Developmental/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neuroglia/metabolism , Olfactory Bulb , Olfactory Receptor Neurons/pathology , Animals , Antigens, Neoplasm/metabolism , Embryo, Mammalian , Gonadotropin-Releasing Hormone/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Neuropeptide Y/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/embryology , Olfactory Bulb/metabolism , Olfactory Marker Protein/genetics , Olfactory Marker Protein/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Tubulin/metabolism
11.
Brain ; 141(8): 2299-2311, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29985992

ABSTRACT

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Subject(s)
Neurodevelopmental Disorders/genetics , Repressor Proteins/genetics , Repressor Proteins/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Adolescent , Animals , Child , Child, Preschool , Female , Gene Expression Regulation/genetics , Germ-Line Mutation , Haploinsufficiency , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Lymphocytes/pathology , Lymphocytes/physiology , Male , Mice , Mutation , Repressor Proteins/metabolism , T-Lymphocytes/physiology , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism
12.
Front Mol Neurosci ; 11: 103, 2018.
Article in English | MEDLINE | ID: mdl-29674952

ABSTRACT

Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF) synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs). Moreover, a dramatic decline of long-term potentiation (LTP) of the dentate gyrus-CA3 (DG-CA3) projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.

13.
J Vis Exp ; (125)2017 07 25.
Article in English | MEDLINE | ID: mdl-28784978

ABSTRACT

In utero electroporation is a rapid and powerful approach to study the process of radial migration in the cerebral cortex of developing mouse embryos. It has helped to describe the different steps of radial migration and characterize the molecular mechanisms controlling this process. To directly and dynamically analyze migrating neurons they have to be traced over time. This protocol describes a workflow that combines in utero electroporation with organotypic slice culture and time-lapse confocal imaging, which allows for a direct examination and dynamic analysis of radially migrating cortical neurons. Furthermore, detailed characterization of migrating neurons, such as migration speed, speed profiles, as well as radial orientation changes, is possible. The method can easily be adapted to perform functional analyses of genes of interest in radially migrating cortical neurons by loss and gain of function as well as rescue experiments. Time-lapse imaging of migrating neurons is a state-of-the-art technique that once established is a potent tool to study the development of the cerebral cortex in mouse models of neuronal migration disorders.


Subject(s)
Cerebral Cortex/embryology , Neurons/cytology , Organ Culture Techniques/methods , Time-Lapse Imaging/methods , Animals , Brain/cytology , Brain/embryology , Carrier Proteins/genetics , Cell Movement/physiology , Cerebral Cortex/cytology , DNA-Binding Proteins , Electroporation , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mutation , Neurons/physiology , Nuclear Proteins/genetics , Pregnancy , Repressor Proteins , Time-Lapse Imaging/instrumentation
14.
Neuron ; 87(2): 311-25, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26182416

ABSTRACT

During neocortical development, neurons undergo polarization, oriented migration, and layer-type-specific differentiation. The transcriptional programs underlying these processes are not completely understood. Here, we show that the transcription factor Bcl11a regulates polarity and migration of upper layer neurons. Bcl11a-deficient late-born neurons fail to correctly switch from multipolar to bipolar morphology, resulting in impaired radial migration. We show that the expression of Sema3c is increased in migrating Bcl11a-deficient neurons and that Bcl11a is a direct negative regulator of Sema3c transcription. In vivo gain-of-function and rescue experiments demonstrate that Sema3c is a major downstream effector of Bcl11a required for the cell polarity switch and for the migration of upper layer neurons. Our data uncover a novel Bcl11a/Sema3c-dependent regulatory pathway used by migrating cortical neurons.


Subject(s)
Carrier Proteins/physiology , Cell Movement/genetics , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Neurons/physiology , Nuclear Proteins/physiology , Semaphorins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Polarity/genetics , DNA-Binding Proteins , Embryo, Mammalian , Gene Expression Regulation, Developmental/genetics , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , In Vitro Techniques , Mice , Mice, Transgenic , Microarray Analysis , Mutation/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Organ Culture Techniques , Repressor Proteins , Semaphorins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
15.
J Vis Exp ; (97)2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25866930

ABSTRACT

Mouse genetics offers a powerful tool determining the role of specific genes during development. Analyzing the resulting phenotypes by immunohistochemical and molecular methods provides information of potential target genes and signaling pathways. To further elucidate specific regulatory mechanisms requires a system allowing the manipulation of only a small number of cells of a specific tissue by either overexpression, ablation or re-introduction of specific genes and follow their fate during development. To achieve this ex utero electroporation of hippocampal structures, especially the dentate gyrus, followed by organotypic slice culture provides such a tool. Using this system to generate mosaic deletions allows determining whether the gene of interest regulates cell-autonomously developmental processes like progenitor cell proliferation or neuronal differentiation. Furthermore it facilitates the rescue of phenotypes by re-introducing the deleted gene or its target genes. In contrast to in utero electroporation the ex utero approach improves the rate of successfully targeting deeper layers of the brain like the dentate gyrus. Overall ex utero electroporation and organotypic slice culture provide a potent tool to study regulatory mechanisms in a semi-native environment mirroring endogenous conditions.


Subject(s)
Dentate Gyrus/physiology , Electroporation/methods , Organ Culture Techniques/methods , Animals , Dentate Gyrus/cytology , Dentate Gyrus/embryology , Desmoplakins/physiology , Down-Regulation , Female , Gene Expression Regulation, Developmental , Mice , Pregnancy , Repressor Proteins/physiology , Single-Cell Analysis/methods , Tumor Suppressor Proteins/physiology , Up-Regulation
16.
PLoS One ; 8(11): e77928, 2013.
Article in English | MEDLINE | ID: mdl-24223744

ABSTRACT

Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory afferents primarily innervate sensory interneurons that are located in lamina III-IV. In this study, we outline a combinatorial transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III-IV of the postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up laminae III-IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons and opening the door to their genetic manipulation in adult animals.


Subject(s)
Interneurons/metabolism , Posterior Horn Cells/metabolism , Transcription Factors/metabolism , Animals , Interneurons/classification , Mechanotransduction, Cellular , Mice , Mice, Transgenic , Sensory Receptor Cells/classification , Sensory Receptor Cells/metabolism , Spinal Cord/cytology , Transcription Factors/genetics , Transcriptome
17.
EMBO J ; 31(13): 2922-36, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22588081

ABSTRACT

The development of the dentate gyrus is characterized by distinct phases establishing a durable stem-cell pool required for postnatal and adult neurogenesis. Here, we report that Bcl11b/Ctip2, a zinc finger transcription factor expressed in postmitotic neurons, plays a critical role during postnatal development of the dentate gyrus. Forebrain-specific ablation of Bcl11b uncovers dual phase-specific functions of Bcl11b demonstrated by feedback control of the progenitor cell compartment as well as regulation of granule cell differentiation, leading to impaired spatial learning and memory in mutants. Surprisingly, we identified Desmoplakin as a direct transcriptional target of Bcl11b. Similarly to Bcl11b, postnatal neurogenesis and granule cell differentiation are impaired in Desmoplakin mutants. Re-expression of Desmoplakin in Bcl11b mutants rescues impaired neurogenesis, suggesting Desmoplakin to be an essential downstream effector of Bcl11b in hippocampal development. Together, our data define an important novel regulatory pathway in hippocampal development, by linking transcriptional functions of Bcl11b to Desmoplakin, a molecule known to act on cell adhesion.


Subject(s)
Dentate Gyrus/physiology , Neurogenesis/physiology , Repressor Proteins/physiology , Tumor Suppressor Proteins/physiology , Animals , Animals, Newborn , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Desmoplakins/physiology , Female , Learning Disabilities/metabolism , Learning Disabilities/physiopathology , Male , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Mice, Knockout , Mice, Transgenic , Prosencephalon/cytology , Prosencephalon/metabolism , Repressor Proteins/genetics , Stem Cells/physiology , Tumor Suppressor Proteins/genetics
18.
Mol Cell Biol ; 32(13): 2467-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22508986

ABSTRACT

Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.


Subject(s)
Dendrites/metabolism , Dendrites/ultrastructure , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase 6/metabolism , Protein Serine-Threonine Kinases/metabolism , Septins/metabolism , Animals , Base Sequence , DNA Primers/genetics , GTP-Binding Protein Regulators/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , HeLa Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 6/chemistry , Mitogen-Activated Protein Kinase 6/genetics , Models, Neurological , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Neurogenesis/physiology , Neurons/metabolism , Neurons/ultrastructure , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Septins/chemistry , Septins/genetics , Transfection
19.
Development ; 139(10): 1831-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22491945

ABSTRACT

Dorsal spinal cord neurons receive and integrate somatosensory information provided by neurons located in dorsal root ganglia. Here we demonstrate that dorsal spinal neurons require the Krüppel-C(2)H(2) zinc-finger transcription factor Bcl11a for terminal differentiation and morphogenesis. The disrupted differentiation of dorsal spinal neurons observed in Bcl11a mutant mice interferes with their correct innervation by cutaneous sensory neurons. To understand the mechanism underlying the innervation deficit, we characterized changes in gene expression in the dorsal horn of Bcl11a mutants and identified dysregulated expression of the gene encoding secreted frizzled-related protein 3 (sFRP3, or Frzb). Frzb mutant mice show a deficit in the innervation of the spinal cord, suggesting that the dysregulated expression of Frzb can account in part for the phenotype of Bcl11a mutants. Thus, our genetic analysis of Bcl11a reveals essential functions of this transcription factor in neuronal morphogenesis and sensory wiring of the dorsal spinal cord and identifies Frzb, a component of the Wnt pathway, as a downstream acting molecule involved in this process.


Subject(s)
Carrier Proteins/metabolism , Ganglia, Spinal/cytology , Neurons/cytology , Nuclear Proteins/metabolism , Spinal Cord/cytology , Animals , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Chromatin Immunoprecipitation , DNA-Binding Proteins , Electrophysiology , Ganglia, Spinal/metabolism , In Situ Hybridization , Mice , Mice, Knockout , Morphogenesis/genetics , Morphogenesis/physiology , Neurons/metabolism , Nuclear Proteins/genetics , Real-Time Polymerase Chain Reaction , Repressor Proteins , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Spinal Cord/metabolism
20.
FEBS J ; 278(2): 371-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21126319

ABSTRACT

Regulation of energy homeostasis is mainly mediated by factors in the hypothalamus and the brainstem. Understanding these regulatory mechanisms is of great clinical relevance in the treatment of obesity and related diseases. The homeobox gene Sax2 is expressed predominantly in the brainstem, in the vicinity of serotonergic neurons, and in the ventral neural tube starting during early development. Previously, we have shown that the loss of function of the Sax2 gene in mouse causes growth retardation starting at birth and a high rate of postnatal lethality, as well as a dramatic metabolic phenotype. To further define the role of Sax2 in energy homeostasis, age-matched adult wild-type, Sax2 heterozygous and null mutant animals were exposed to a high-fat diet. Although food uptake among the different groups was comparable, Sax2 null mutants fed a high-fat diet exhibited a significantly lower weight gain compared to control animals. Unlike their counterparts, Sax2 null mutants did not develop insulin resistance and exhibited significantly lower leptin levels under both standard chow and high-fat diet conditions. Furthermore, neuropeptide Y, an important regulator of energy homeostasis, was significantly decreased in the forebrain of Sax2 null mutants on a high-fat diet. These data strongly suggest a critical role for Sax2 gene expression in diet-induced obesity. Sax2 gene expression may be required to allow the coordinated crosstalk of factors involved in the maintenance of energy homeostasis, possibly regulating the transcription of specific factors involved in energy balance.


Subject(s)
Dietary Fats/pharmacology , Homeodomain Proteins/metabolism , Nuclear Proteins/metabolism , Obesity/chemically induced , Obesity/prevention & control , Transcription Factors/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Body Temperature/physiology , Body Weight/drug effects , Body Weight/physiology , Brain/drug effects , Brain/metabolism , Eating/physiology , Energy Metabolism/physiology , Female , Gene Expression/drug effects , Gene Expression/genetics , Glycogen/metabolism , Heterozygote , Homeodomain Proteins/genetics , Insulin/blood , Leptin/blood , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Nuclear Proteins/genetics , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Serotonin/metabolism , Sex Characteristics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...