Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neuroscience ; 380: 90-102, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29660444

ABSTRACT

Ca2+-binding protein 1 (CaBP1) is a Ca2+-sensing protein similar to calmodulin that potently regulates voltage-gated Ca2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories.


Subject(s)
Calcium-Binding Proteins/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Memory/physiology , Spatial Learning/physiology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Brain Inj ; 32(1): 113-122, 2018.
Article in English | MEDLINE | ID: mdl-29156991

ABSTRACT

PRIMARY OBJECTIVE: Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. RESEARCH DESIGN: We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. METHODS AND PROCEDURES: We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. MAIN OUTCOMES AND RESULTS: RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. CONCLUSIONS: rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.


Subject(s)
Anxiety/etiology , Behavior, Animal/physiology , Brain Concussion/complications , Encephalitis/etiology , Memory Disorders/etiology , Spatial Memory/physiology , Animals , Anxiety/pathology , Anxiety/psychology , Astrocytes/pathology , Brain/pathology , Brain Concussion/pathology , Brain Concussion/psychology , Encephalitis/pathology , Encephalitis/psychology , Gliosis/etiology , Gliosis/pathology , Gliosis/psychology , Male , Maze Learning/physiology , Memory Disorders/pathology , Memory Disorders/psychology , Mice , Microglia/pathology , Models, Animal , Motor Activity/physiology , Recurrence
3.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27822499

ABSTRACT

Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.


Subject(s)
Blast Injuries/pathology , Blast Injuries/physiopathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Wallerian Degeneration/pathology , Wallerian Degeneration/physiopathology , Animals , Axons/pathology , Axons/physiology , Blast Injuries/complications , Blast Injuries/psychology , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/psychology , Cognition , Disease Models, Animal , Male , Maze Learning , Mice, Mutant Strains , Motor Activity , Neuroprotection , Retina/pathology , Retina/physiopathology , Spatial Memory , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vision Disorders/etiology , Vision Disorders/pathology , Vision Disorders/physiopathology , Vision Disorders/psychology , Visual Perception , Wallerian Degeneration/etiology , Wallerian Degeneration/psychology
4.
eNeuro ; 3(2)2016.
Article in English | MEDLINE | ID: mdl-27066530

ABSTRACT

Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract.


Subject(s)
Calcium Channels, L-Type/metabolism , Hippocampus/cytology , Mutation/genetics , Neurogenesis/genetics , Neurons/physiology , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Bromodeoxyuridine/metabolism , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Carbazoles/pharmacology , Cell Survival/genetics , Corticosterone/blood , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/drug effects , Neuroprotective Agents/pharmacology , Prosencephalon/cytology , Stress, Psychological/blood , Stress, Psychological/genetics , Stress, Psychological/pathology
7.
Article in English | MEDLINE | ID: mdl-27158662

ABSTRACT

BACKGROUND: There are currently no therapeutic options for patients with Parkinson's disease that prevent or slow the death of dopaminergic neurons. We have recently identified the novel P7C3 class of neuroprotective molecules that blocks neuron cell death. AIMS: The aim of this study was to determine whether treatment with highly active members of the P7C3 series blocks dopaminergic neuron cell death and associated behavioral and neurochemical deficits in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. METHODS: After unilateral injection of 6-OHDA into the median forebrain bundle, rats were assessed for behavioral function in the open field, cylinder test, and amphetamine-induced circling test. Thereafter, their brains were subjected to neurochemical and immunohistochemical analysis of dopaminergic neuron survival. Analysis was conducted as a function of treatment with P7C3 compounds, with administration initiated either before or after 6-OHDA exposure. RESULTS: Animals administered P7C3-A20 or P7C3-S243, two of the most advanced agents in the P7C3 series of neuroprotective compounds, both before and after 6-OHDA exposure showed evidence of protective efficacy in all measures. When P7C3-S243 administration was initiated after 6-OHDA exposure, rats also showed protective efficacy in all measures, which included blocking dopaminergic neuron cell death in ipsilateral substantia nigra pars compacta, preservation of dopamine and its metabolites in ipsilateral striatum, and preservation of normal motor behavior. CONCLUSIONS: The P7C3 series of compounds may form the basis for developing new therapeutic agents for slowing or preventing progression of Parkinson's disease.

8.
Cell Rep ; 8(6): 1731-1740, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25220467

ABSTRACT

The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI.


Subject(s)
Axonal Transport/drug effects , Axons/metabolism , Carbazoles/pharmacology , Neuroprotective Agents/pharmacology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Injuries/drug therapy , Carbazoles/chemistry , Carbazoles/therapeutic use , Disease Models, Animal , Hippocampus/metabolism , Memory/drug effects , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Neuroprotective Agents/therapeutic use , Nicotinamide Phosphoribosyltransferase/metabolism , Synaptic Transmission/drug effects
9.
PLoS One ; 8(12): e80737, 2013.
Article in English | MEDLINE | ID: mdl-24312498

ABSTRACT

The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Child Development Disorders, Pervasive/metabolism , Child Development Disorders, Pervasive/physiopathology , LIM Domain Proteins/metabolism , Mutation , Synapsins/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Behavior, Animal , Child Development Disorders, Pervasive/genetics , Humans , LIM Domain Proteins/genetics , Mice , Mice, Mutant Strains , Neurons/metabolism , Neurons/pathology , PC12 Cells , Rats , Synapsins/genetics , Synaptic Vesicles/genetics , Synaptic Vesicles/metabolism , Synaptic Vesicles/pathology , Tumor Suppressor Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 110(26): 10759-64, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754400

ABSTRACT

Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normalize compulsive grooming and striatal electrophysiologic impairments in synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3)-null mice, a model of human obsessive-compulsive disorder. Unexpectedly, genetic deletion of SAPAP3 restores normal weight and metabolic features of MC4R-null mice, a model of human obesity. Our findings offer insights into the pathophysiology and treatment of both compulsive behavior and eating disorders.


Subject(s)
Compulsive Behavior/physiopathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Obesity/physiopathology , Receptor, Melanocortin, Type 4/deficiency , Receptor, Melanocortin, Type 4/genetics , Animals , Body Weight , Compulsive Behavior/prevention & control , Corpus Striatum/physiopathology , Disease Models, Animal , Female , Grooming/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Obesity/prevention & control , Peptides, Cyclic/pharmacology , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Signal Transduction/drug effects , Synaptic Transmission/physiology
11.
Proc Natl Acad Sci U S A ; 109(42): 17010-5, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23027934

ABSTRACT

We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors , 1-Methyl-4-phenylpyridinium/antagonists & inhibitors , Carbazoles/pharmacology , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Substantia Nigra/cytology , Animals , Apoptosis/drug effects , Caenorhabditis elegans , Carbazoles/chemical synthesis , Carbazoles/chemistry , Carbazoles/pharmacokinetics , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/drug effects , Indoles/pharmacokinetics , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Molecular Structure , Substantia Nigra/drug effects
12.
Cell ; 142(1): 39-51, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20603013

ABSTRACT

An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging. PAPERCLIP:


Subject(s)
Carbazoles/pharmacology , Drug Evaluation, Preclinical , Neurogenesis/drug effects , Neurons/cytology , Neuroprotective Agents/pharmacology , Aging/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carbazoles/chemistry , Cognition/drug effects , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Female , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Neuroprotective Agents/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...