Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892079

ABSTRACT

Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.


Subject(s)
Cannabis , Fungicides, Industrial , Microbiota , Rhizosphere , Soil Microbiology , Cannabis/enzymology , Microbiota/drug effects , Fungicides, Industrial/pharmacology , Cannabinoids/pharmacology , Cannabinoids/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/enzymology , RNA, Ribosomal, 16S/genetics
2.
Environ Entomol ; 51(4): 790-797, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35834263

ABSTRACT

Habitat diversification has been shown to positively influence a variety of ecosystem services to agriculture, including biological control of arthropod pests. The impact of increased biodiversity tends to be species specific though, and practices therefore need to be developed on a case-by-case basis for each cropping system. In perennial systems, numerous studies have demonstrated that cover crops can have positive impacts on soil quality and other ecosystem services, such as pollination and pest management. However, few studies have focused on the use of cover crops to enhance pest control in almond orchards, especially winter cover crops. The primary pest of almonds in North America is navel orangeworm, Amyelois transitella Walker, which overwinter as larva or pupa on remnant nuts, many of which remain on the orchard soil surface. In the spring, first flight adults subsequently use these remnant nuts as reproductive substrate. An experiment was conducted to evaluate the influence of two distinct winter cover crop mixtures on overwintering mortality and spring egg deposition of A. transitella. Remnant nuts placed into cover crop plots produced fewer adult A. transitella in the spring, suggesting increased overwintering mortality. Additionally, spring egg deposition was reduced on remnant nuts in the cover crops, possibly due to the ground covers interfering with host location and access. In this way, winter cover crops appear to contribute to the reduction of A. transitella populations in the orchard by altering abiotic and physical conditions, although studies to document specific mechanisms are still needed.


Subject(s)
Moths , Prunus dulcis , Animals , Ecosystem , Larva , Soil
3.
J Insect Sci ; 21(2)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33908604

ABSTRACT

The 2020 Student Debates of the Entomological Society of America (ESA) were live-streamed during the Virtual Annual Meeting to debate current, prominent entomological issues of interest to members. The Student Debates Subcommittee of the National ESA Student Affairs Committee coordinated the student efforts throughout the year and hosted the live event. This year, four unbiased introductory speakers provided background for each debate topic while four multi-university teams were each assigned a debate topic under the theme 'Technological Advances to Address Current Issues in Entomology'. The two debate topics selected were as follows: 1) What is the best taxonomic approach to identify and classify insects? and 2) What is the best current technology to address the locust swarms worldwide? Unbiased introduction speakers and debate teams began preparing approximately six months before the live event. During the live event, teams shared their critical thinking and practiced communication skills by defending their positions on either taxonomical identification and classification of insects or managing the damaging outbreaks of locusts in crops.


Subject(s)
Entomology , Animals , Classification/methods , Grasshoppers , Pest Control, Biological , Plants, Genetically Modified
4.
J Insect Sci ; 20(5)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33119749

ABSTRACT

Every year, the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC) for the annual Entomological Society of America (ESA) meeting organizes the Student Debates. This year, the SAC selected topics based on their synergistic effect or ability to ignite exponential positive change when addressed as a whole. For the 2019 Student Debates, the SAC SDS identified these topic areas for teams to debate and unbiased introduction speakers to address: 1) how to better communicate science to engage the public, particularly in the area of integrated pest management (IPM), 2) the influential impacts of climate change on agriculturally and medically relevant insect pests, and 3) sustainable agriculture techniques that promote the use of IPM to promote food security. Three unbiased introduction speakers gave a foundation for our audience to understand each debate topic, while each of six debate teams provided a strong case to support their stance or perspective on a topic. Debate teams submitted for a competitive spot for the annual ESA Student Debates and trained for the better part of a year to showcase their talents in presenting logical arguments for a particular topic. Both the debate teams and unbiased introduction speakers provided their insight toward a better understanding of the complexities of each topic and established a foundation to delve further into the topics of science advocacy and communication, climate change, and the many facets of integrated pest management.


Subject(s)
Climate Change , Information Dissemination , Pest Control , Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...