Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(21): 9809-9822, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38739843

ABSTRACT

Emulating the capabilities of the soluble methane monooxygenase (sMMO) enzymes, which effortlessly activate oxygen at diiron(II) centers to form a reactive diiron(IV) intermediate Q, which then performs the challenging oxidation of methane to methanol, poses a significant challenge. Very recently, one of us reported the mononuclear complex [(cyclam)FeII(CH3CN)2]2+ (1), which performed a rare bimolecular activation of the molecule of O2 to generate two molecules of FeIV═O without the requirement of external proton or electron sources, similar to sMMO. In the present study, we employed the density functional theory (DFT) calculations to investigate this unique mechanism of O2 activation. We show that secondary hydrogen-bonding interactions between ligand N-H groups and O2 play a vital role in reducing the energy barrier associated with the initial O2 binding at 1 and O-O bond cleavage to form the FeIV═O complex. Further, the unique reactivity of FeIV═O species toward simultaneous C-H and O-H bond activation process has been demonstrated. Our study unveils that the nature of the magnetic coupling between the diiron centers is also crucial. Given that the influence of magnetic coupling and noncovalent interactions in catalysis remains largely unexplored, this unexplored realm presents numerous avenues for experimental chemists to develop novel structural and functional analogues of sMMO.

2.
Chem Asian J ; 18(23): e202300773, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37855305

ABSTRACT

The electron transfer (ET) step is one of the crucial processes in biochemical redox reactions that occur in nature and has been established as a key step in dictating the reactivity of high-valent metal-oxo species. Although metalloenzymes possessing metal-oxo units at their active site are typically associated with outer-sphere electron transfer (OSET) processes, biomimetic models, in contrast, have been found to manifest either an inner-sphere electron transfer (ISET) or OSET mechanism. This distinction is clearly illustrated through the behaviour of [(N4Py)MnIV (O)]2+ (1) and [(N4Py)FeIV (O)]2+ (2) complexes, where complex 1 showcases an OSET mechanism, while complex 2 exhibits an ISET mechanism, especially evident in their reactions involving C-H bond activation and oxygen atom transfer reactions in the presence of a Lewis/Bronsted acid. However, the precise reason for this puzzling difference remains elusive. This work unveils the origin of the perplexing inner-sphere vs outer-sphere electron transfer process (ISET vs OSET) in [(N4Py)MnIV (O)]2+ (1) and [(N4Py)FeIV (O)]2+ (2) species in the presence of Bronsted acid. The calculations indicate that when the substrate (toluene) approaches both 1 and 2 that is hydrogen bonded with two HOTf molecules (denoted as 1-HOTf and 2-HOTf, respectively), proton transfer from one of the HOTf molecules to the metal-oxo unit is triggered and a simultaneous electron transfer occurs from toluene to the metal centre. Interestingly, the preference for OSET by 1-HOTf is found to originate from the choice of MnIV =O centre to abstract spin-down (ß) electron from toluene to its δ(dxy ) orbital. On the other hand, in 2-HOTf, a spin state inversion from triplet to quintet state takes place during the proton (from HOTf) coupled electron transfer (from toluene) preferring a spin-up (α) electron abstraction to its σ* (dz 2 ) orbital mediated by HOTf giving rise to ISET. In addition, 2-HOTf was calculated to possess a larger reorganisation energy, which facilitates the ISET process via the acid. The absence of spin-inversion and smaller reorganisation energy switch the mechanism to OSET for 1-HOTf. Therefore, for the first time, the significance of spin-state and spin-inversion in the electron transfer process has been identified and demonstrated within the realm of high-valent metal-oxo chemistry. This discovery holds implications for the potential involvement of high-valent Mn-oxo species in performing similar transformative processes within Photosystem II.

SELECTION OF CITATIONS
SEARCH DETAIL
...