Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 111: 557-566, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29208507

ABSTRACT

Myrtenol is a monoterpene with multiple pharmacological activities. However, although monoterpenes have been proposed to play beneficial roles in a variety of cardiac disorders, pharmacological actions of myrtenol in the heart are not yet reported. Hence, the aim of this study was to evaluate whether myrtenol promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury, and the mechanisms involved in these effects. Male Wistar rats were orally treated for seven consecutive days with myrtenol (50 mg/kg) or N-acetyl cysteine (1.200 mg/kg, NAC). Afterward, hearts were subjected to myocardial IR injury. Here, we show that the severe impairment of contractile performance induced by IR was significantly prevented by myrtenol or NAC. Moreover, myrtenol abolished aberrant electrocardiographic waveform (ST-segment elevation), as well as reduced life-threatening arrhythmias and infarct size induced by IR injury. Importantly, myrtenol fully prevented the massive increase of cardiac reactive oxygen species generation and oxidative stress damage. Accordingly, myrtenol restored the impairment of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and reductase) activities and balance of pro- and anti-apoptotic pathways (Bax and Bcl-2), associated with decreased apoptotic cells. Taken together, our data show that myrtenol promotes cardioprotection against IR injury through attenuation of oxidative stress and inhibition of pro-apoptotic pathway.


Subject(s)
Antioxidants/metabolism , Apoptosis/drug effects , Monoterpenes/administration & dosage , Myocardial Reperfusion Injury/prevention & control , Animals , Bicyclic Monoterpenes , Catalase/metabolism , Glutathione Peroxidase/metabolism , Heart/drug effects , Heart/physiopathology , Humans , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
2.
J Ethnopharmacol ; 138(2): 382-9, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-21963557

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Brazilian folk medicine uses infusion of Costus spiralis leaf to help people to treat arterial hypertension and syndromes of cardiac hyperexcitability. AIM OF THE STUDY: Evaluate the aqueous fraction (AqF) effect on atrial contractility and investigate its mechanism of action. MATERIALS AND METHODS: The AqF effect on the cardiac contractility was studied on isolated electrically driven guinea pig left atria. Atropine and tetraethylammonium (TEA) were employed to investigate whether potassium contributes for the inotropic mechanism of the AqF. The role of calcium in this effect was also studied. This was done by analysing the AqF effect on the Bowditch's phenomenon, as well as by studying whether it could interfere with the concentration-effect curve for CaCl(2), isoproterenol, and BAY K8644. Mice isolated cardiomyocytes were submitted to a whole-cell patch-clamp technique in order to evaluate whether the L-type calcium current participates on the AqF effect. Furthermore, the intracellular calcium transient was studied by confocal fluorescence microscopy. RESULTS: AqF depressed the atrial contractile force. It was the most potent fraction from C. spiralis leaf (EC(50)=305 ± 41 mg/l) (crude extract: EC(50)=712 ± 41; ethyl acetate: EC(50)=788 ± 121; chloroform: EC(50)=8,948 ± 1,346 mg/l). Sodium and potassium content in the AqF was 0.15 mM and 1.91 mM, respectively. Phytochemical analysis revealed phenols, tannins, flavones, xanthones, flavonoids, flavonols, flavononols, flavonones, and saponins. Experiments with atropine and TEA showed that potassium does not participate of the inotropic mechanism of AqF. However, this fraction decreased the force overshoot characteristic of the Bowditch's phenomenon, and shifted the concentration-response curve for CaCl(2) (EC(50) from 1.12 ± 0.07 to 7.23 ± 0.47 mM) indicating that calcium currents participate on its mechanism of action. Results obtained with isoproterenol (1-1,000 pM) and BAY K8644 (5-2000nM) showed that AqF abolished the inotropic effect of these substances. On cardiomyocytes, 48mg/l AqF reduced (∼23%) the L-type calcium current density from -6.3 ± 0.3 to -4.9 ± 0.2 A/F (n=5 cells, p<0.05) and reduced the intracellular calcium transient (∼20%, 4.7 ± 1.2 a.u., n=42 cells to 3.7 ± 1.00 a.u., n=35 cells, p<0.05). However, the decay time of the fluorescence was not changed (control: 860 ± 32 ms, n=42 cells; AqF: 876 ± 26 ms, n=35 cells, p>0.05). CONCLUSIONS: The AqF of C. spiralis leaf depresses myocardial contractility by reducing the L-type calcium current and by decreasing the intracellular calcium transient. Despite the lack of data on the therapeutic dose of AqF used in folk medicine, our results support, at least in part, the traditional use of this plant to treat cardiac disorders.


Subject(s)
Calcium Channels, L-Type/drug effects , Costus/chemistry , Myocardial Contraction/drug effects , Plant Extracts/pharmacology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Guinea Pigs , In Vitro Techniques , Isoproterenol/pharmacology , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...