Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Cardiol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030270

ABSTRACT

For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.

2.
Aerosp Med Hum Perform ; 93(12): 830-839, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36757241

ABSTRACT

BACKGROUND: High-G acceleration experienced during launch and re-entry of suborbital spaceflights may present challenges for older or medically susceptible participants. A detailed understanding of the associated physiological responses would support the development of an evidence-based medical approach to commercial suborbital spaceflight.METHODS: There were 24 healthy subjects recruited into 'younger' (18-44 yr), 'intermediate' (45-64 yr) and 'older' (65-80 yr) age groups. Cardiovascular and respiratory variables were measured continuously during dynamic combinations of +Gx (chest-to-back) and +Gz (head-to-foot) acceleration that simulated suborbital G profiles for spaceplane and rocket/capsule platforms. Measurements were conducted breathing air and breathing 15% oxygen to simulate a cabin pressure altitude of 8000 ft.RESULTS: Suborbital G profiles generated highly dynamic changes in heart rate, blood pressure, and cardiac output. G-induced hypoxemia was observed, with minimum arterial oxygen saturation < 80% in a quarter of subjects. Increased age was associated with greater hypoxemia and reduced cardiac output responses but did not have detrimental cardiovascular effects. ECG changes included recurrent G-induced trigeminy in one individual. Respiratory and visual symptoms were common, with 88% of subjects reporting greyout and 29% reporting blackout. There was one episode of G-induced loss of consciousness (G-LOC).DISCUSSION: Suborbital acceleration profiles are generally well tolerated but are not physiologically inconsequential. Marked hemodynamic effects and transient respiratory compromise could interact with predisposing factors to precipitate adverse cardiopulmonary effects in a minority of participants. Medically susceptible individuals may benefit from expanded preflight centrifuge familiarization that includes targeted physiological evaluation in the form of a 'G challenge test'.Smith TG, Pollock RD, Britton JK, Green NDC, Hodkinson PD, Mitchell SJ, Stevenson AT. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2022; 93(12):830-839.


Subject(s)
Aerospace Medicine , Space Flight , Humans , Centrifugation , Hemodynamics , Blood Pressure , Acceleration
SELECTION OF CITATIONS
SEARCH DETAIL
...