Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(5): e96611, 2014.
Article in English | MEDLINE | ID: mdl-24827724

ABSTRACT

Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards for Phytosanitary Measures No. 15 (ISPM15) in 2002, which provides treatment standards for WPM used in international trade. ISPM15 was originally developed by members of the International Plant Protection Convention to "practically eliminate" the risk of international transport of most bark and wood pests via WPM. The United States (US) implemented ISPM15 in three phases during 2005-2006. We compared pest interception rates of WPM inspected at US ports before and after US implementation of ISPM15 using the US Department of Agriculture AQIM (Agriculture Quarantine Inspection Monitoring) database. Analyses of records from 2003-2009 indicated that WPM infestation rates declined 36-52% following ISPM15 implementation, with results varying in statistical significance depending on the selected starting parameters. Power analyses of the AQIM data indicated there was at least a 95% chance of detecting a statistically significant reduction in infestation rates if they dropped by 90% post-ISPM15, but the probability fell as the impact of ISPM15 lessened. We discuss several factors that could have reduced the apparent impact of ISPM15 on lowering WPM infestation levels, and suggest ways that ISPM15 could be improved. The paucity of international interception data impeded our ability to conduct more thorough analyses of the impact of ISPM15, and demonstrates the need for well-planned sampling programs before and after implementation of major phytosanitary policies so that their effectiveness can be assessed. We also present summary data for bark- and wood-boring insects intercepted on WPM at US ports during 1984-2008.


Subject(s)
Ectoparasitic Infestations/prevention & control , Insect Control/statistics & numerical data , Quarantine/legislation & jurisprudence , Wood/parasitology , Animals , Disinfectants/pharmacology , Guidelines as Topic , Insect Control/legislation & jurisprudence , Insecta/drug effects , Insecta/physiology , Product Packaging , United States , United States Department of Agriculture
2.
New Phytol ; 197(1): 9-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23181679
3.
PLoS One ; 6(9): e24587, 2011.
Article in English | MEDLINE | ID: mdl-21931766

ABSTRACT

Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.


Subject(s)
Conservation of Natural Resources/economics , Ecosystem , Trees , Animals , Bayes Theorem , Environment , Health Expenditures , Insecta , Models, Economic , Public Policy , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...