Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(20): 4824-4832, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38410880

ABSTRACT

Liquid-phase exfoliation using biomolecules in aqueous solution is a promising approach to obtain high quality 2D nanosheets. For example, the well-studied graphene-binding peptide, P1 (sequence HSSYWYAFNNKT), has been previously investigated and shown to have a good ability to exfoliate graphene sheets in aqueous conditions under sonication, maintaining colloidal stability. Building on this, the biomolecular exfoliant and assembly motif (BEAM) peptide, that features a graphene-binding domain at one end and a hexagonal boron nitride (h-BN) binding domain at the other, separated by a 10-carbon fatty acid chain in the centre, is shown to exfoliate graphene sheets from bulk graphite in aqueous media. An in-depth examination of the ability of the BEAM to both facilitate sheet exfoliation under sonication conditions and also maintain colliodal stability is provided through molecular dynamics simulations. These findings open new possibilities for designing multi-functional molecules that can both exfoliate and organise 2D materials into heterostructures under ambient conditions in aqueous media.


Subject(s)
Graphite , Molecular Dynamics Simulation , Peptides , Graphite/chemistry , Peptides/chemistry , Boron Compounds/chemistry , Particle Size
2.
Nanoscale ; 14(38): 14113-14121, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36073151

ABSTRACT

The ability to integrate two disparate materials-binding domains into a single ligand to achieve regiospecific binding would be powerful to direct material assembly; however, this has proven challenging to achieve due to cross-materials binding. Accomplishing this goal might be achieved by harnessing the precision of biology to exploit the recognition between peptides and specific nanomaterials. Here, a designed bifunctional molecule termed Biomolecular Exfoliant and Assembly Motifs (BEAM) is introduced, featuring two different materials-binding peptide domains, one for graphene and one for hexagonal boron nitride (h-BN), at each end of the molecule, separated by a fatty acid spacer. The BEAM is demonstrated to bind strongly to both graphene and h-BN surfaces, and in each case the materials-binding peptide domain is shown to preferentially bind its target material. Critically, the two materials-binding domains exhibited limited cross-domain interaction. The BEAM design concept shows substantial potential to eventually guide self-organization of a range of materials in aqueous media.


Subject(s)
Graphite , Boron Compounds , Fatty Acids , Graphite/chemistry , Ligands , Peptides/chemistry , Surface Properties
3.
J Phys Chem B ; 125(37): 10621-10628, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34505506

ABSTRACT

The adsorption of materials-binding peptides to technologically relevant 2D nanosheets of h-BN could be transformative for both property modulation and materials applications. To enhance binding, integration of non-natural functionalities into the biomolecule could prove to be important. However, very little is understood regarding the impact of these biomolecular structural alterations on the binding, which could influence the affinity and surface-adsorbed structures. Here, the effect of fatty acid incorporation site and carbon chain length is investigated using the BP7 peptide, previously identified with affinity for h-BN. The peptide was modified at either the N- or C-terminus with a fatty acid chain length of 6-12 carbons long. The binding affinity and bio-overlayer viscoelasticity are quantified using quartz crystal microbalance analysis. While fatty acid conjugation did not substantially affect the affinity of the resultant biomolecules, it did alter the viscoelasticity of the biomolecular overlayer on the h-BN surface based upon the carbon chain length and incorporation site. Molecular dynamics simulations demonstrate interplay between enthalpic and entropic effects in modifying the overlayer viscoelasticity. The simulations predict that C-terminal conjugation promotes the enhancement of upright adsorbed states, compared with the N-terminal case, with this effect most pronounced for the 10-carbon chain.


Subject(s)
Boron Compounds , Fatty Acids , Adsorption , Peptides
4.
Nanoscale ; 13(11): 5670-5678, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33725079

ABSTRACT

The bio-recognition capabilities of materials-specific peptides offer a promising route to obtaining and organizing 2D nanosheet materials in aqueous media. Although significant advances have been made for graphene, little is currently understood regarding how to apply this strategy to hexagonal boron nitride (h-BN) due to a lack of knowledge regarding peptide/h-BN interactions. Here, one of the few peptide sequences known with affinity for h-BN, BP7, is the focus of mutation studies and bio-conjugation. A combination of experimental methods and modeling reveals the importance of Tyrosine in peptide/h-BN interactions. This residue is identified as the key anchoring species, which is then leveraged via bio-conjugation of BP7 to a fatty acid to create new interfacial properties. Specific placement of the fatty acid in the bio-conjugate results in dramatic manipulation of the surface-bound biotic overlayer to generate a highly viscoelastic interface. This viscoelasticity is a consequence of the fatty acid binding, which also down-modulates Tyrosine contact to h-BN, resulting in presentation of the extended peptide to solution. In this orientation, the biomolecule is available for subsequent bioconjugation, providing new pathways to programmable organization and conjugation of h-BN nanosheets in liquid water.


Subject(s)
Boron Compounds , Graphite , Amino Acid Sequence , Peptides
5.
Nanomaterials (Basel) ; 10(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291389

ABSTRACT

Lipid multilayer gratings are promising optical biosensor elements that are capable of transducing analyte binding events into changes in an optical signal. Unlike solid state transducers, reagents related to molecular recognition and signal amplification can be incorporated into the lipid grating ink volume prior to fabrication. Here we describe a strategy for functionalizing lipid multilayer gratings with a DNA aptamer for the protein thrombin that allows label-free analyte detection. A double cholesterol-tagged, double-stranded DNA linker was used to attach the aptamer to the lipid gratings. This approach was found to be sufficient for binding fluorescently labeled thrombin to lipid multilayers with micrometer-scale thickness. In order to achieve label-free detection with the sub-100 nm-thick lipid multilayer grating lines, the binding affinity was improved by varying the lipid composition. A colorimetric image analysis of the light diffracted from the gratings using a color camera was then used to identify the grating nanostructures that lead to an optimal signal. Lipid composition and multilayer thickness were found to be critical parameters for the signal transduction from the aptamer functionalized lipid multilayer gratings.

6.
Chem Commun (Camb) ; 56(62): 8834-8837, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32632430

ABSTRACT

Nanosheet heterostructures offer emergent optical/electronic properties. These could be achieved using selective materials binding peptides, but lack of understanding of selectivity impedes advancement. Here we examine peptides with affinity for graphene or h-BN using quantitative experiments and molecular simulation to identify traits for design of 2D nanosheet selective peptides.


Subject(s)
Boron Compounds/chemistry , Graphite/chemistry , Oligopeptides/chemistry , Adsorption , Amino Acid Sequence
7.
Langmuir ; 33(41): 10898-10906, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28915051

ABSTRACT

We report the effect of topographical features on gold nanowire assemblies in a vertically applied AC electric field. Nanowires 300 nm in diameter ×2.5 µm long, and coated with ∼30 nm silica shell, were assembled in aqueous solution between top and bottom electrodes, where the bottom electrode was patterned with cylindrical dielectric posts. Assemblies were monitored in real time using optical microscopy. Dielectrophoretic and electrohydrodynamic forces were manipulated through frequency and voltage variation, organizing nanowires parallel to the field lines, i.e., standing perpendicular to the substrate surface. Field gradients around the posts were simulated and assembly behavior was experimentally evaluated as a function of patterned feature diameter and spacing. The electric field gradient was highest around these topographic features, which resulted in accumulation of vertically oriented nanowires around the post perimeters when dielectrophoresis dominated (high AC frequency) or between the posts when electrohydrodynamics dominated (low AC frequency). This general type of reconfigurable assembly, coupled with judicious choice of nanowire and post materials/dimensions, could ultimately enable new types of optical materials capable of switching between two functional states by changing the applied field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...