Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3509, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316472

ABSTRACT

Compound dry-hot extreme (CDHE) events pose greater risks to the environment, society, and human health than their univariate counterparts. Here, we project decadal-length changes in the frequency and duration of CDHE events for major U.S. cities during the 21st century. Using the Weather Research and Forecasting (WRF) model coupled to an urban canopy parameterization, we find a considerable increase in the frequency and duration of future CDHE events across all U.S. major cities under the compound effect of high-intensity GHG- and urban development-induced warming. Our results indicate that while GHG-induced warming is the primary driver of the increased frequency and duration of CDHE events, urban development amplifies this effect and should not be neglected. Furthermore, We show that the highest frequency amplification of major CDHE events is expected for U.S. cities across the Great Plains South, Southwest, and the southern part of the Northwest National Climate Assessment regions.

2.
Int J Biometeorol ; 66(4): 833-848, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35118573

ABSTRACT

Urban street design choices relating to tree planting, building height and spacing, ground cover, and building façade properties impact outdoor thermal exposure. However, existing tools to simulate heat exposure have limitations with regard to optimization of street design for pedestrian cooling. A microscale three-dimensional (3D) urban radiation and energy balance model, Temperatures of Urban Facets for Pedestrians (TUF-Pedestrian), was developed to simulate pedestrian radiation exposure and study heat-reducing interventions such as urban tree planting and modifications to building and paving materials. TUF-Pedestrian simulates the spatial distribution of radiation and surface temperature impacts of trees and buildings on their surroundings at the sub-facet scale. In addition, radiation absorption by a three-dimensional pedestrian is considered, permitting calculation of a summary metric of human radiation exposure: the mean radiant temperature (TMRT). TUF-Pedestrian is evaluated against a unique 24-h observational dataset acquired using a mobile human-biometeorological station, MaRTy, in an urban canyon with trees on the Arizona State University Tempe campus (USA). Model evaluation demonstrates that TUF-Pedestrian accurately simulates both incoming directional radiative fluxes and TMRT in an urban environment with and without tree cover. Model sensitivity simulations demonstrate how modelled TMRT and directional radiative fluxes respond to increased building height (ΔTMRT reaching -32 °C when pedestrian becomes shaded), added tree cover (ΔTMRT approaching -20 °C for 8 m trees with leaf area density of 0.5 m2 m-3), and increased street albedo (ΔTMRT reaching + 6 °C for a 0.21 increase in pavement albedo). Sensitivity results agree with findings from previous studies and demonstrate the potential utility of TUF-Pedestrian as a tool to optimize street design for pedestrian heat exposure reduction.


Subject(s)
Pedestrians , Cities , Hot Temperature , Humans , Meteorology , Temperature , Trees
3.
Sci Total Environ ; 811: 151326, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34757097

ABSTRACT

Cities are facing the twin pressures of greenhouse gas driven climatic warming and locally induced urban heating. These pressures are threatening populations that are sensitive to extreme heat due to sociodemographic factors including economic means. Heat-reducing infrastructure adaptation measures such as reflective "cool" materials can reduce urban temperatures. Here we examine the needs-based equity implications associated with heat-reducing cool roofing in Maricopa County, Arizona through application of high-resolution urban-atmospheric simulations. We simulate heatwave conditions and evaluate the air temperature reduction arising from uniform cool roof implementation (i.e., the entire urbanized county), and contrast results against simulated cooling impacts of needs-based targeted cool roof implementation in sociodemographically heat sensitive areas. We find that installing cool roofs uniformly, rather than in a targeted fashion, provides on average 0.66 °C reduction in the highest heat sensitivity area and 0.39 °C temperature reduction in the lowest heat sensitivity area due in part to a higher roof area density in the heat sensitive area. Targeting cool roof implementation yields 0.45 °C cooling in the most sensitive areas compared to 0.22 °C cooling in the least sensitive areas, meaning that needs-based targeted cool roofs in high sensitivity areas provide more relief than cool roofs targeted at low sensitivity areas, thus providing more cooling where it is most needed. Needs-based targeted implementation has the dual benefits of concurrently producing more than twice as much cooling and reducing heat exposure for the largest absolute number of individuals in the densely populated, highly heat sensitive areas. Targeting cool roof implementation to high heat sensitivity areas, however, does not achieve thermally equal temperatures in Maricopa County because the high sensitivity areas were substantially warmer than low sensitivity areas prior to implementation. This study illustrates the utility of a new "Targeted Urban Heat Adaptation" (TUHA) framework to assess needs-based equity implications of heat-reducing strategies and underscores its importance by examining the impacts of cooling interventions across sociodemographically heterogeneous urban environments.


Subject(s)
Extreme Heat , Cities , Cold Temperature , Hot Temperature , Humans , Sociodemographic Factors
4.
Environ Sci Technol ; 55(10): 6957-6964, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33930272

ABSTRACT

The potential for critical infrastructure failures during extreme weather events is rising. Major electrical grid failure or "blackout" events in the United States, those with a duration of at least 1 h and impacting 50,000 or more utility customers, increased by more than 60% over the most recent 5 year reporting period. When such blackout events coincide in time with heat wave conditions, population exposures to extreme heat both outside and within buildings can reach dangerously high levels as mechanical air conditioning systems become inoperable. Here, we combine the Weather Research and Forecasting regional climate model with an advanced building energy model to simulate building-interior temperatures in response to concurrent heat wave and blackout conditions for more than 2.8 million residents across Atlanta, Georgia; Detroit, Michigan; and Phoenix, Arizona. Study results find simulated compound heat wave and grid failure events of recent intensity and duration to expose between 68 and 100% of the urban population to an elevated risk of heat exhaustion and/or heat stroke.


Subject(s)
Climate , Hot Temperature , Arizona , Climate Change , Georgia , Michigan , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...