Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 28(2): 497-507, 2012.
Article in English | MEDLINE | ID: mdl-22162520

ABSTRACT

Interleukin 15 (IL-15) has shown remarkable biological properties of promoting NK- and T-cell activation and proliferation, as well as enhancing antitumor immunity of CD8(+) T cells in preclinical models. Here, we report the development of an E. coli cell line to express recombinant human Interleukin-15 (rhIL-15) for clinical manufacturing. Human IL-15 cDNA sequence was inserted into a pET28b plasmid and expressed in several E. coli BL21 strains. Through product quality comparisons among several E. coli strains, including E. coli BL21(DE3), BL21(DE3)pLysS, BLR(DE3)pLysS, and BL21-AI, E. coli BL21-AI was selected for clinical manufacturing. Expression optimization was carried out at shake flask and 20-L fermenter scales, and the product was expressed as inclusion bodies that were solubilized, refolded, and purified to yield active rhIL-15. Stop codons of the expression construct were further investigated after 15-20% of the purified rhIL-15 showed an extraneous peak corresponding to an extra tryptophan residue based on peptide mapping and mass spectrometry analysis. It was determined that the presence of an extra tryptophan was due to a stop codon wobble effect, which could be eliminated by replacing TGA (opal) stop codon with TAA (ochre). As a novel strategy, a simple method of demonstrating lack of tRNA suppressors in the production host cells was developed to validate the cells in this study. The E. coli BL21-AI cells containing the rhIL-15 coding sequence with a triplet stop codon TAATAATGA were banked for further clinical manufacturing.


Subject(s)
Codon, Terminator , Escherichia coli/genetics , Interleukin-15/genetics , Protein Engineering , Cell Proliferation/drug effects , Escherichia coli/metabolism , Gene Expression , Humans , Interleukin-15/metabolism , Interleukin-15/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Hum Gene Ther ; 22(7): 821-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21171861

ABSTRACT

Conditionally replicative adenoviral (CRAd) virotherapy represents a promising therapeutic approach for cancer. We have demonstrated that a serotype chimeric adenoviral 5/3 fiber-knob modification achieves enhanced ovarian cancer infectivity, conditional replication, and oncolytic activity. This study evaluated the safety of intraperitoneal (IP) Ad5/3-Δ24 in advance of a phase I clinical trial in gynecologic cancers. Syrian hamster cohorts were treated with IP Ad5/3-Δ24 or control buffer for 3 consecutive days and euthanized on study days 8, 17, 57, and 89. Blood and tissue samples were harvested from each animal. For biodistribution studies, presence and quantitation of viral levels within samples were determined via quantitative polymerase chain reaction. For safety studies, animals were assessed for adverse vector-related tissue or laboratory effects. In the biodistribution study, low levels of Ad5/3-Δ24 DNA were noted outside of the abdominal cavity. Viral DNA levels in tissues obtained from the peritoneal cavity peaked at day 8 and declined thereafter. In the safety study, no specific histopathologic changes were attributable to virus administration. Hematologic findings noted in the 1 × 10(11) viral particles (vp)/dose group on Days 4 and/or 8 were indicative of an Ad5/3-Δ24-specific generalized inflammatory response; these findings resolved by day 56. The no observable adverse effect level was determined to be 1 × 10(10) vp/dose. This study elucidates the safety profile of IP administration of the serotype chimeric infectivity-enhanced CRAd, Ad5/3-Δ24, and provides guidance for a planned phase I trial for patients with recurrent gynecologic cancers.


Subject(s)
Adenoviridae/genetics , DNA, Viral/genetics , Oncolytic Virotherapy/methods , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/virology , Adenoviridae/physiology , Animals , Antibodies, Neutralizing/blood , Cricetinae , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Genetic Therapy , Genetic Vectors/pharmacology , Injections, Intraperitoneal , Mesocricetus , Polymerase Chain Reaction , Serotyping , Tissue Distribution , Virus Replication
3.
Biotechnol Prog ; 21(1): 205-20, 2005.
Article in English | MEDLINE | ID: mdl-15903260

ABSTRACT

A GMP-compliant process is described for producing F5cys-PEG-lipid conjugate. This material fuses with preformed, drug-loaded liposomes, to form "immunoliposomes" that bind to HER2/neu overexpressing carcinomas, stimulates drug internalization, and ideally improves the encapsulated drug's therapeutic index. The soluble, single-chain, variable region antibody fragment, designated F5cys, was produced in E. coli strain RV308 using high-density cultures. Affinity adsorption onto horizontally tumbled Streamline rProtein-A resin robustly recovered F5cys from high-pressure-disrupted, whole-cell homogenates. Two product-related impurity classes were identified: F5cys with mid-sequence discontinuities and F5cys with remnants of a pelB leader peptide. Low-pressure cation exchange chromatography, conducted at elevated pH under reducing conditions, enriched target F5cys relative to these impurities and prepared a C-terminal cysteine for conjugation. Site-directed conjugation, conducted at pH 5.9 +/- 0.1 with reaction monitoring and cysteine quenching, yielded F5cys-MP-PEG(2000)-DSPE. Low-pressure size exclusion chromatography separated spontaneously formed, high-molecular-weight conjugate micelles from low-molecular-weight impurities. When formulated at 1-2 mg/mL in 10 mM trisodium citrate, 10% sucrose (w/v), at pH 6.4 (HCl), the conjugate was stable when stored below -70 degrees C. Six scale-up lots were compared. The largest 40-L culture produced enough F5cys to manufacture 2,085 mg of conjugate, enough to support planned preclinical and future clinical trials. The conjugate was 93% pure, as measured by polyacrylamide gel electrophoresis. Impurities were primarily identified as product-related. Residual endotoxin, rProtein A, and genomic DNA, were at acceptable levels. This study successfully addressed a necessary step in the scale-up of immunoliposome-encapsulated therapeutics.


Subject(s)
Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/isolation & purification , Liposomes/isolation & purification , Liposomes/metabolism , Amino Acid Sequence , Cell Division/physiology , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Escherichia coli/chemistry , Escherichia coli/cytology , Micelles , Molecular Conformation , Molecular Sequence Data , Phosphates/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...