Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32905453

ABSTRACT

NASA's Marshall Space Flight Center (MSFC) maintains an active research program toward the development of high-resolution, lightweight, grazing-incidence x-ray optics to serve the needs of future x-ray astronomy missions such as Lynx. MSFC development efforts include both direct fabrication (diamond turning and deterministic computer-controlled polishing) of mirror shells and replication of mirror shells (from figured, polished mandrels). Both techniques produce full-circumference monolithic (primary + secondary) shells that share the advantages of inherent stability, ease of assembly, and low production cost. However, to achieve high-angular resolution, MSFC is exploring significant technology advances needed to control sources of figure error including fabrication- and coating-induced stresses and mounting-induced distortions.

2.
Rev Sci Instrum ; 87(10): 104501, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802704

ABSTRACT

An X-ray reflectometer (XRR) system has been developed at the Marshall Space Flight Center (MSFC) for characterizing various soft and hard X-ray optic coatings. The XRR instrument generates X-ray radiation using a high-output rotating anode source (RAS), operational over a voltage range of 5-35 kV and a current range of 10-150 mA. Copper is used as the target material to produce an X-ray spectrum from which the Kα line at 8.048 keV is isolated for the reflectivity measurements. Five precision slits are mounted along the X-ray beam path to limit the extent of the beam at the sample and to adjust the resolution in the measurements. A goniometer consisting of two precision rotary stages controls the positions of the coating sample and the X-ray detector with respect to the beam. The detector itself is a high performance silicon drift detector used to achieve high count rate efficiency to attain good statistics in the reflectivity measurement at larger grazing angles. The X-ray reflectometer system design and capabilities are described in detail. Verification of the system is obtained through an interlaboratory study in which reflectivity measurements of a multilayer coating made at MSFC are compared with those made at two external laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...