Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 3100, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082722

ABSTRACT

Efficient wide-bandgap perovskite solar cells (PSCs) enable high-efficiency tandem photovoltaics when combined with crystalline silicon and other low-bandgap absorbers. However, wide-bandgap PSCs today exhibit performance far inferior to that of sub-1.6-eV bandgap PSCs due to their tendency to form a high density of deep traps. Here, we show that healing the deep traps in wide-bandgap perovskites-in effect, increasing the defect tolerance via cation engineering-enables further performance improvements in PSCs. We achieve a stabilized power conversion efficiency of 20.7% for 1.65-eV bandgap PSCs by incorporating dipolar cations, with a high open-circuit voltage of 1.22 V and a fill factor exceeding 80%. We also obtain a stabilized efficiency of 19.1% for 1.74-eV bandgap PSCs with a high open-circuit voltage of 1.25 V. From density functional theory calculations, we find that the presence and reorientation of the dipolar cation in mixed cation-halide perovskites heals the defects that introduce deep trap states.

2.
J Phys Chem Lett ; 9(14): 3878-3885, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29938512

ABSTRACT

The past few years have witnessed unprecedented rapid improvement of the performance of a new class of photovoltaics based on halide perovskites. This progress has been achieved even though there is no generally accepted mechanism of the operation of these solar cells. Here we present a model based on bistable amphoteric native defects that accounts for all key characteristics of these photovoltaics and explains many idiosyncratic properties of halide perovskites. We show that a transformation between donor-like and acceptor-like configurations leads to a resonant interaction between amphoteric defects and free charge carriers. This interaction, combined with the charge transfer from the perovskite to the electron and hole transporting layers results in the formation of a dynamic n-i-p junction whose photovoltaic parameters are determined by the perovskite absorber. The model provides a unified explanation for the outstanding properties of the perovskite photovoltaics, including hysteresis of J-V characteristics and ultraviolet light-induced degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...