Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 59(4): 637-643, 2023 08.
Article in English | MEDLINE | ID: mdl-37256710

ABSTRACT

Phytoplankton dynamics are regulated by external cues, such as light and nutrients, as well as by biotic interactions and endogenous controls linked to life cycle characteristics. The planktonic pennate diatom Pseudo-nitzschia multistriata, with a heterothallic mating system with two opposite mating types (MTs), represents a model for the study of diatom life cycles. P. multistriata is a toxic species, able to produce the neurotoxin domoic acid. First described in Japan in 1993, it was detected at the long-term monitoring station MareChiara (Gulf of Naples, Italy) in 1995. Since then, P. multistriata has been reported from several worldwide coastal sites. A large body of knowledge has been produced on its ecology, genetic diversity, and life cycle characteristics. The availability of these data, the ecological relevance of the Pseudo-nitzschia genus, and its controllable life cycle with a short generation time made it an ideal species to develop a genetic model system for diatoms. To enable functional studies, a 59 Mb genome sequence and several transcriptomic data were produced, and genetic transformation was optimized. These tools allowed the discovery of the first mating-type determining gene for diatoms. Gene expression studies and metabolomics analyses defined genes and molecules underpinning different phases of the process of sexual reproduction. This model system, developed to explore the genetics of diatom life cycles, offers the opportunity to parallel experimental observations in the laboratory using in situ meta-omics analyses along space and time, empowering knowledge on the biology and ecology of the genus.


Subject(s)
Diatoms , Animals , Phytoplankton , Reproduction/genetics , Life Cycle Stages , Italy , Kainic Acid/metabolism
2.
Biology (Basel) ; 10(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681137

ABSTRACT

Ecotoxicological assays on monospecific phytoplankton have limited application for detecting the effects of environmental pollutants on multiple species communities. With this study, we took an ecotoxicological, ecological, and biochemical approach to evaluate the effects of two contaminants of emerging concern (zinc oxide nanoparticles, ZnO NPs, and potassium dichromate, K2Cr2O7) at different concentrations (K2Cr2O7 5.6-18-50 mg/L; ZnO NPs 10-100-300 mg/L) on natural freshwater and brackish water phytoplankton communities. Cell density and absorbance values decreased in freshwater and brackish water phytoplankton communities after exposure to ZnO NPs (100 mg/L and 300 mg/L only for freshwater), whereas growth rate was increased in both freshwater and brackish water phytoplankton communities after exposure to ZnO NPs 10 mg/L. Differently, there was no clear relationship between concentration and inhibition growth after exposure to K2Cr2O7: the lowest cell density was recorded after exposure to 18 mg/L. Moreover, the evenness index value was lower compared to the other concentrations, indicating the growth of a few, albeit resistant species to higher K2Cr2O7 concentrations. Generally, Bacillariophyceae and Dinoficee were prevalent in phytoplankton cultures after exposure to ZnO NPs and K2Cr2O7. The Shannon-Wiener index was slightly higher in the negative than the positive controls, but diversity was low after all treatments in both ecotoxicological assays. The evenness index was always very close to zero, indicating the numerical predominance of one or very few species. Finally, the decrease in chlorophyll-a and pheophytin-a in both ecotoxicological assays indicated a change in photosynthetic activity. Our findings provide evidence for alterations in natural phytoplankton after exposure to emerging contaminants that can disrupt an entire ecosystem's integrity.

3.
Aquat Toxicol ; 237: 105905, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34229254

ABSTRACT

This study was conducted under the Italian Ministerial Decree D.M. 173/2016 which regulates the assessment of the Sediment Class Quality in Italy using ecotoxicological bioassay and chemical analysis (Weight-Of-Evidence model). The aim of this work was to evaluate the real classification obtained by the theoretically equivalent responses of nine different combinations of batteries based on six different species: Aliivibrio fischeri (inhibition of bioluminescence), Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta (inhibition of algal growth), Paracentrotus lividus and Crassostrea gigas (embryotoxicity). Bioassays, in many cases, showed a non-bioavailability effect of the pollutants; these one highly revealed by the chemical analyses. Algal species showed responses very similar from each other. Otherwise, species used for embryotoxicity produced wide responses, consequently modifying the quality class of sediments and the handling management (i.e. landfill confinement or beach nourishment) allowed by the Law.


Subject(s)
Paracentrotus , Water Pollutants, Chemical , Aliivibrio fischeri , Animals , Biological Assay , Ecotoxicology , Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 279: 130623, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134419

ABSTRACT

Phytoplankton occupies a key trophic level in aquatic ecosystems. Chemical impacts on these primary producers can disrupt the integrity of an entire ecosystem. Two freshwater (Pseudokirchneriella subcapitata-Ps and Scenedesmus obliquus-S) and three marine (Phaeodactylum tricornutum-P, Isochrysis galbana-I, Tetraselmis suecica-T) microalgae species were exposed to dilutions of four chemicals: nanoparticles (n-TiO2, n-ZnO), amoxicillin (antibiotic), and white musk (personal care fragrance) to determine the half maximal effective concentration (EC50) after 72 h of exposure under standardized and controlled environmental conditions. Cell cultures were exposed to EC50 to determine sublethal effects (72 h) based on biochemical (chlorophylls a, b, c), molecular (changes in outer cell wall structure), and morphological alterations. We report for the first time EC50 values for nanoparticles in not standardized species (S, I and T) and for amoxicillin and white musk in all tested species. Standardized species (Ps and P) were less sensitive than non-standardized in some cases. Fourier-transformed infrared spectroscopy showed a marked spectral alteration (from 10.44% to 90.93%) of treated cultures compared to negative controls; however, principal component analysis disclosed no differences in molecular alteration between the five microalgae species or the two aquatic habitats considered. There was a significant decrease in chlorophylls content in all species exposed to EC50 compared to controls (Kruskal Wallis test; p < 0.05). There was a significant increase in cell-size (Mann-Whitney U test; p < 0.05) in I, P and T exposed to white musk and S exposed to amoxicillin. Findings highlight ecotoxicological risks from new generation pollutants for primary producers in aquatic ecosystems.


Subject(s)
Environmental Pollutants , Microalgae , Nanoparticles , Water Pollutants, Chemical , Amoxicillin/toxicity , Ecosystem , Fatty Acids, Monounsaturated , Fresh Water , Phytoplankton , Water Pollutants, Chemical/toxicity
5.
Environ Pollut ; 282: 116997, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33819777

ABSTRACT

This study evaluated the chronic toxicity (30 days) of different sizes of polyethylene terephthalate (PET) microplastics (60-3000 µm) provided alone or in combination with acid rain, on garden cress (Lepidium sativum). Both biometrical and physiological traits have been evaluated: i) percentage inhibition of seed germination, plant height, leaf number and fresh biomass production; ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione production); iii) impairment in photosynthetic machinery in term of pigments production; iv) aminolevulinic acid and proline production. Results highlighted that different sizes of PET, alone or in combination with acid rain, are able to negatively affect both biometrical and physiological plant traits. In particular, the lower size of microplastics is able to negatively affect growth and development, as well as to trigger the oxidative burst. Regarding the pigments production, PET coupled with acid rain, induced a higher production of Chl-b, and an inhibition of aminolevulinic acid.


Subject(s)
Acid Rain , Microplastics , Lepidium sativum , Plastics , Polyethylene Terephthalates
6.
Ecotoxicol Environ Saf ; 208: 111718, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396049

ABSTRACT

Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.


Subject(s)
Acid Rain/toxicity , Lepidium sativum/drug effects , Microplastics/toxicity , Polyethylene Terephthalates/toxicity , Water Pollutants, Chemical/toxicity , Lepidium sativum/growth & development , Lepidium sativum/metabolism , Lepidium sativum/physiology , Microplastics/chemistry , Oxidative Stress/drug effects , Particle Size , Plant Leaves/drug effects , Plant Roots/drug effects , Polyethylene Terephthalates/chemistry , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology , Water Pollutants, Chemical/chemistry
7.
Mar Pollut Bull ; 152: 110918, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32479291

ABSTRACT

This study estimates chemical composition of microplastic in sediments and benthic detritivores (sea cucumbers) collected from different marine rocky bottom habitat types (bank, landslide, cliff) of Salina Island (Aeolian Archipelago, Italy). Also, species richness and bottom coverings by benthic species were recorded at each sampling station. Correlations among chemical composition of microplastic in sediments and in detritivores were explored linking recorded variability to the factor "habitat type". Results evidence that the habitat types considered in this study are characterized by wide species richness and by high percentages of bottom coverage by protected species by international conventions. In spite of the high ecological value of habitats considered in this study, microplastics were recorded both in sediments (PVC, PET, PE, PS, PA, PP) and in stomach contents of sea cucumbers (PET, PA) collected in all sampling sites, confirming the exposure of benthic species to microplastic pollution.


Subject(s)
Plastics , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Environmental Monitoring , Geologic Sediments , Islands , Italy , Microplastics
8.
Mar Pollut Bull ; 157: 111300, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32469748

ABSTRACT

Marine litter levels were measured in the stomach contents, hepatopancreas, and gonad tissues of crustacea decapod (Callinectes sapidus Rathbun, 1896; n = 6), a widespread alien species affecting the Lesina lagoon. Results highlight a mean of 2.5 (SD = 1.6) items/animal and indicate the presence of metals fragments (13%) and plastics (13% PE; 6.7% PET) in the stomach contents of collected individuals. No microplastic particles were detected in the hepatopancreas or in muscle tissue, while microplastic fibres (nylon, rayon, polyester) were found present in female specimen gonads. The presence of synthetic fibres in the investigated species reflects the relative contamination level in this habitat type and suggests that the blue crab could be considered a model organism for evaluating the contamination status of the study area.


Subject(s)
Brachyura , Animals , Female , Hepatopancreas , Introduced Species , Ovary , Plastics
9.
Sci Total Environ ; 727: 138609, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32339829

ABSTRACT

In this study, for the first time, acute and chronic toxicity caused by four different kinds of microplastics: polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and a commercial mixture (PE + PVC) on Lepidium sativum were evaluated. Parameters considered were: i) biometric parameters (e.g. percentage inhibition of seed germination, plant height, leaf number and fresh biomass productions); and ii) oxidative stress (e.g. levels of hydrogen peroxide, glutathione, and ascorbic acid). On plants exposed to chronic stress chlorophylls, carotenoids, aminolaevulinic acid, and proline productions were, also, evaluated. PVC resulted the most toxic than other plastic materials tested. This study represents the first paper highlighting microplastics are able to produce oxidative burst in tested plants and could represent an important starting point for future researches on biochemical effects of microplastic in terrestrial environments such as agroecosystems.


Subject(s)
Lepidium sativum , Water Pollutants, Chemical/analysis , Microplastics , Plastics , Polyethylene , Polyvinyl Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...