Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 11: 221, 2017.
Article in English | MEDLINE | ID: mdl-29180955

ABSTRACT

The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.

2.
Neuropsychopharmacology ; 42(5): 1058-1069, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27905406

ABSTRACT

It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications.


Subject(s)
Alcoholism/physiopathology , Calcium Channels, L-Type/physiology , Calcium Channels/physiology , Drug-Seeking Behavior , Ethanol/administration & dosage , Alcoholism/metabolism , Amygdala/drug effects , Amygdala/metabolism , Animals , Calcium Channel Blockers/administration & dosage , Calcium Channels/metabolism , Calcium Channels, L-Type/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Male , Membrane Potentials/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , RNA, Messenger , Rats, Wistar , Verapamil/administration & dosage
3.
Behav Brain Res ; 313: 293-301, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27374159

ABSTRACT

Epidemiological surveys have indicated that anxiety disorders are more frequent in diabetic patients than in the general population. Similar results have been shown in animal studies using the streptozotocin (STZ)-induced diabetes model. The mechanisms underlying this relationship are not clearly understood, but it has been suggested that alterations in the dopaminergic neurotransmission, which plays an important role in the amygdaloid modulation of fear and anxiety, may be involved. The aim of this study was to ascertain whether or not the amygdaloid DA D1 receptors are involved in the increase of anxiety-like behavior observed in "diabetic" animals. Adult Wistar male rats were injected with STZ (50mg/kg, i.p.) in two consecutive days and subjected to the Shock-Probe Burying Test 10days after the beginning of treatment. STZ-treated rats showed a significant increase in immobility/freezing behavior whereas no effects were elicited in latency to bury, burying behavior itself and the number of shocks received during testing as compared with non-diabetic controls. These results suggest the triggering of a passive coping response in the STZ-treated rats. Interestingly, immobility/freezing behavior was reversed following the intra-amygdaloid dopamine D1 receptor blockade by the local microinfusion of SCH23390 (100ng/side). Autoradiographic experiments showed a selective increase of [(3)H]-SCH23390 binding in the ventral intercalated paracapsular islands of STZ-treated rats when compared to the non-treated control group. Our results suggest that a hyperdopaminergic state involving DA D1 receptors within the amygdala may have a role in the increase of anxiety observed in diabetic rats.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , Receptors, Dopamine D1/metabolism , Amygdala/drug effects , Animals , Anxiety/chemically induced , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Benzazepines/pharmacology , Fear/drug effects , Fear/physiology , Male , Rats, Wistar , Streptozocin , Synaptic Transmission/drug effects
4.
Schizophr Res ; 177(1-3): 59-66, 2016 11.
Article in English | MEDLINE | ID: mdl-27132494

ABSTRACT

Schizophrenia is a severe neuropsychiatric disorder with impairments in social cognition. Several brain regions have been implicated in social cognition, including the nucleus caudatus, prefrontal and temporal cortex, and cerebellum. Oxytocin is a critical modulator of social cognition and the formation and maintenance of social relationships and was shown to improve symptoms and social cognition in schizophrenia patients. However, it is unknown whether the oxytocin receptor is altered in the brain. Therefore, we used qRT-PCR and Ornithine Vasotocin Analog ([125I]OVTA)-based receptor autoradiography to investigate oxytocin receptor expression at both the mRNA and protein level in the left prefrontal and middle temporal cortex, left nucleus caudatus, and right posterior superior vermis in 10 schizophrenia patients and 6 healthy controls. Furthermore, to investigate confounding effects of long-term antipsychotic medication we treated rats with clozapine or haloperidol for 12weeks and assessed expression of the oxytocin receptor in cortical and subcortical brain regions. In schizophrenia patients, we found a downregulation of oxytocin receptor mRNA in the temporal cortex and a decrease in receptor binding in the vermis. In the other regions, the results showed trends in the same direction, without reaching statistical significance. We found no differences between antipsychotic-treated rats and controls. Downregulated expression and binding of the oxytocin receptor in brain regions involved in social cognition may lead to a dysfunction of oxytocin signaling. Our results support a dysfunction of the oxytocin receptor in schizophrenia, which may contribute to deficits of social cognition.


Subject(s)
Brain/metabolism , Receptors, Oxytocin/metabolism , Schizophrenia/metabolism , Adult , Aged , Aged, 80 and over , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Autoradiography , Binding Sites , Brain/drug effects , Clozapine/pharmacology , Female , Gene Expression/drug effects , Haloperidol/pharmacology , Humans , Male , Middle Aged , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Schizophrenia/drug therapy
5.
Proc Natl Acad Sci U S A ; 113(11): 3024-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26903621

ABSTRACT

A major hypothesis in addiction research is that alcohol induces neuroadaptations in the mesolimbic dopamine (DA) system and that these neuroadaptations represent a key neurochemical event in compulsive drug use and relapse. Whether these neuroadaptations lead to a hypo- or hyperdopaminergic state during abstinence is a long-standing, unresolved debate among addiction researchers. The answer is of critical importance for understanding the neurobiological mechanism of addictive behavior. Here we set out to study systematically the neuroadaptive changes in the DA system during the addiction cycle in alcohol-dependent patients and rats. In postmortem brain samples from human alcoholics we found a strong down-regulation of the D1 receptor- and DA transporter (DAT)-binding sites, but D2-like receptor binding was unaffected. To gain insight into the time course of these neuroadaptations, we compared the human data with that from alcohol-dependent rats at several time points during abstinence. We found a dynamic regulation of D1 and DAT during 3 wk of abstinence. After the third week the rat data mirrored our human data. This time point was characterized by elevated extracellular DA levels, lack of synaptic response to D1 stimulation, and augmented motor activity. Further functional evidence is given by a genetic rat model for hyperdopaminergia that resembles a phenocopy of alcohol-dependent rats during protracted abstinence. In summary, we provide a new dynamic model of abstinence-related changes in the striatal DA system; in this model a hyperdopaminergic state during protracted abstinence is associated with vulnerability for relapse.


Subject(s)
Alcohol Abstinence , Alcoholism/metabolism , Dopamine/physiology , Ethanol/adverse effects , Substance Withdrawal Syndrome/metabolism , 3,4-Dihydroxyphenylacetic Acid/analysis , Adult , Aged , Animals , Benzazepines/pharmacology , Brain Chemistry , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Ethanol/toxicity , Excitatory Postsynaptic Potentials/drug effects , Female , Gene Expression Regulation , Homovanillic Acid/analysis , Humans , Male , Middle Aged , Motor Activity/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Transgenic , Rats, Wistar , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Recurrence , Transcription, Genetic
6.
Drug Alcohol Depend ; 155: 37-44, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26342627

ABSTRACT

BACKGROUND: Studies in humans and rodents have demonstrated under certain conditions some reinforcing properties of modafinil, a drug being examined clinically for its potential to treat psychostimulant abuse. However, the majority of rodent studies examining the abuse potential of modafinil have used high doses that may not be clinically relevant. In fact, recent work has indicated that doses similar to those administered to humans are not reinforcing in mice. METHODS: The current study examined sex differences in the ability of low-dose modafinil (0.75mg/kg, IP) to induce a conditioned place preference in mice, and assessed sex-dependent alterations in dopamine D1, D2 and DAT binding sites in reward-related regions in naïve and modafinil-treated mice. RESULTS: Low-dose modafinil failed to induce a conditioned place preference in male mice, while female mice demonstrated a significant modafinil place preference. Several dopamine binding differences were also detected in naïve and modafinil-treated mice, including sex differences in D1 and D2 availability in reward-related regions, and are discussed in relation to sex-dependent differences in the reinforcing effects of modafinil and psychostimulants in general. CONCLUSIONS: These findings implicate sex differences in the reinforcing properties of modafinil in mice, and indicate that clinical evaluation of the sex dependence of the reinforcing properties of modafinil in humans is warranted.


Subject(s)
Benzhydryl Compounds/pharmacology , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Sex Characteristics , Animals , Brain/metabolism , Female , Male , Mice , Modafinil , Radioligand Assay , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...