Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 32(7): 861-5, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10454745

ABSTRACT

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.


Subject(s)
Antigens, Polyomavirus Transforming/genetics , Cell Transformation, Neoplastic/genetics , Polyomavirus Infections/virology , Polyomavirus/genetics , Signal Transduction/genetics , Animals , Humans , Mice , Mutation , Transcription, Genetic
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;32(7): 861-5, July 1999.
Article in English | LILACS | ID: lil-234892

ABSTRACT

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control


Subject(s)
Humans , Animals , Mice , Antigens, Polyomavirus Transforming/genetics , Cell Transformation, Neoplastic/genetics , Papillomavirus Infections/genetics , Polyomavirus/genetics , Signal Transduction/genetics , Antigens, Polyomavirus Transforming/metabolism , Cell Transformation, Neoplastic/metabolism , Mutation , Papillomavirus Infections/metabolism , Polyomavirus , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL