Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 6(7): 418-429, 2017 07.
Article in English | MEDLINE | ID: mdl-28722322

ABSTRACT

Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose finding (London 4-5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators were presented. These methods are described in the present report: they include five advanced methods for data analysis (empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dose-finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.


Subject(s)
Dose-Response Relationship, Drug , Drug Discovery , Models, Theoretical , Animals , Clinical Trials as Topic , Humans , Pharmaceutical Preparations/administration & dosage , Research Design
2.
CPT Pharmacometrics Syst Pharmacol ; 4(7): 406-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26312164

ABSTRACT

An existing population pharmacokinetic model of darunavir in adults was updated using pediatric data from two studies evaluating weight-based, once-daily dosing of darunavir/ritonavir (ARIEL, NCT00919854 and DIONE, NCT00915655). The model was then used to provide once-daily dosing recommendations for darunavir/ritonavir in pediatric patients aged ≥3 to <12 years. The final model comprised two compartments with first-order absorption and apparent clearance dependent on the concentration of α1-acid glycoprotein. The recommended darunavir/ritonavir once-daily dosing regimens in children aged ≥3 to <12 years are: 35/7 mg/kg from 10 to <15 kg, 600/100 mg from 15 to <30 kg, 675/100 mg from 30 to <40 kg, and 800/100 mg for ≥40 kg. These doses should result in exposures similar to the adult exposure after treatment with darunavir/ritonavir 800/100 mg once daily, while minimizing pill burden and allowing a switch from suspension to tablet(s) as early as possible.

3.
Acta Crystallogr B ; 65(Pt 3): 350-4, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19461145

ABSTRACT

The title compound, [Ca(C4H4O6)].4H2O, calcium tartrate tetrahydrate, is a new triclinic centrosymmetric form identified in rat kidney calculus. The crystal structure was determined from powder and single-crystal X-ray diffraction. The four water molecules belong to one square face of the Ca-atom coordination (a square antiprism), the four O atoms of the second square face coming from two tartrate anions, building infinite chains alternating Ca atom polyhedra and tartrate anions along a, with the chains cross-linked by a network of hydrogen bonds.


Subject(s)
Tartrates/chemistry , Urinary Calculi/chemistry , Animals , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Isomerism , Male , Microscopy, Electron, Scanning , Models, Molecular , Molecular Conformation , Rats , Rats, Wistar , Urinary Calculi/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...