Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0252314, 2021.
Article in English | MEDLINE | ID: mdl-34048471

ABSTRACT

Breast ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC). It is still unclear which DCIS will become invasive and which will remain indolent. Patients often receive surgery and radiotherapy, but this early intervention has not produced substantial decreases in late-stage disease. Sprouty proteins are important regulators of ERK/MAPK signaling and have been studied in various cancers. We hypothesized that Sprouty4 is an endogenous inhibitor of ERK/MAPK signaling and that its loss/reduced expression is a mechanism by which DCIS lesions progress toward IDC, including triple-negative disease. Using immunohistochemistry, we found reduced Sprouty4 expression in IDC patient samples compared to DCIS, and that ERK/MAPK phosphorylation had an inverse relationship to Sprouty4 expression. These observations were reproduced using a 3D culture model of disease progression. Knockdown of Sprouty4 in MCF10.DCIS cells increased ERK/MAPK phosphorylation as well as their invasive capability, while overexpression of Sprouty4 in MCF10.CA1d IDC cells reduced ERK/MAPK phosphorylation, invasion, and the aggressive phenotype exhibited by these cells. Immunofluorescence experiments revealed reorganization of the actin cytoskeleton and relocation of E-cadherin back to the cell surface, consistent with the restoration of adherens junctions. To determine whether these effects were due to changes in ERK/MAPK signaling, MEK1/2 was pharmacologically inhibited in IDC cells. Nanomolar concentrations of MEK162/binimetinib restored an epithelial-like phenotype and reduced pericellular proteolysis, similar to Sprouty4 overexpression. From these data we conclude that Sprouty4 acts to control ERK/MAPK signaling in DCIS, thus limiting the progression of these premalignant breast lesions.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nerve Tissue Proteins/metabolism , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Cell Line, Tumor , Cells, Cultured , Female , Humans , Immunoblotting , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Nerve Tissue Proteins/genetics
2.
Semin Cancer Biol ; 54: 29-39, 2019 02.
Article in English | MEDLINE | ID: mdl-29621614

ABSTRACT

Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.


Subject(s)
rap1 GTP-Binding Proteins/metabolism , ras Proteins/metabolism , Animals , Biomarkers, Tumor , Cell Adhesion/genetics , Energy Metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic/drug effects , Humans , Integrins/genetics , Integrins/metabolism , Molecular Targeted Therapy , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/drug effects , rap1 GTP-Binding Proteins/antagonists & inhibitors , rap1 GTP-Binding Proteins/genetics , ras Proteins/antagonists & inhibitors , ras Proteins/genetics
3.
J Mammary Gland Biol Neoplasia ; 24(1): 1-15, 2019 03.
Article in English | MEDLINE | ID: mdl-30056557

ABSTRACT

About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Primary Cell Culture/methods , Breast/pathology , Breast Neoplasms/drug therapy , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Intraductal, Noninfiltrating/drug therapy , Cell Line, Tumor , Coculture Techniques/methods , Drug Screening Assays, Antitumor/methods , Female , Humans , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control
4.
Neoplasia ; 20(9): 951-963, 2018 09.
Article in English | MEDLINE | ID: mdl-30144784

ABSTRACT

Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in MCF10.Ca1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS). Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-Rap1GapshRNA cells reduced Rap1 activity and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive phenotype. The Graphical Abstract summarizes these findings.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , GTPase-Activating Proteins/metabolism , Biomarkers , Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Line, Tumor , Cytoskeleton/metabolism , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , GTPase-Activating Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Immunohistochemistry , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Invasiveness , RNA Interference
5.
Mini Rev Med Chem ; 16(5): 358-69, 2016.
Article in English | MEDLINE | ID: mdl-26423696

ABSTRACT

Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.


Subject(s)
ras Proteins/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Protein Prenylation/drug effects , ras Proteins/antagonists & inhibitors , ras Proteins/genetics
6.
G3 (Bethesda) ; 5(5): 719-40, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25740935

ABSTRACT

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Evolution, Molecular , Genome , Genomics , Animals , Codon , Computational Biology , DNA Transposable Elements , Drosophila melanogaster/genetics , Exons , Gene Rearrangement , Heterochromatin , Introns , Molecular Sequence Annotation , Polytene Chromosomes , Repetitive Sequences, Nucleic Acid , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...